
7 AD-A124 492 SOCTEHN DUES INCUN ESAL SOURCE 00 NGUAND OURING I/
FOR OMPOS TE SOUR ES U ILLNOI S UNI AT URBANA
COORDINATED S CIENCE LAR B S WALLACE DEC al R-929

UNLSIID N001-9C0 0/ / N L



IgI

MI~,CROCOPY RESOLUTION TEST CHART

NATIONAL BURLAUJ OF STANDARDS-1963-A/

la W
,a,&. 

1 .



Next we tau to source coding problems. The deermination of the sources

entropy is of interest as it provides a lower bound on the rate of any

code. If the switching process is stationary then the output process io

also stationary since It to a meesryless function of the switobieg process.
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1' S(OE TECHNIQUES IN UNIVERSAL CODING AIM

CODING FOR COWOSITE SOURCES

SMark Stanley Wallace, Ph.D.
Coordinated Science laboratory and
oDepartmant of Electrical Engineering

University of Illinois at Urbana-ChampaLn, 1982

ABSTRACT

We consider three problems in source coding, First, we consider the

F composite source model. A composite source has a switch driven by a random

process which selects one of a possible set of subsources. We derive some

convergence results for estimation of the switching process, and use these

to prove that the entropy of some composite sources may be computed. Some

I .c oding techniques for composite sources are also presented and their

performance is bounded.

Next, we construct a variable-length-to-fLxed-length (VL-FL) universal

code for a class of unifilar Varkov sources. A VL-FL code maps strings of

source outputs into fixed-length codewords. We show that the redundancy of

the code converges to zero uniformly over the class of sources as the

blocklength increases. The code is also universal with respect to the

IJ initial state of the source. We compare the performance of this code to

FL-VL universal codes.

We then consider universal coding for real-valued sources. We show

that given som coding technique for a known source, we may construct a code

for any class of sources. We show that this technique works for some classes

of memoryless sources, and also for a compact subset of the class of k-th

I order Gaussian autoregressive sources.
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I The general problem in source coding Is that of data compression. The

data which is produced by sore information source must be stored or trans-

mitted. Since there is a cost associated with storage and transmission, it

is of interest to encode the data into as small a number of bits as possible

in order to minimize this cost. If the encoded data is to retain all of

-o the original information then the problem is one in noiseless source coding.

If there is some allowable distortion then the problem is one in rate-

distortion theory or source coding with a fidelity criterion.

In these problems an information source is modeled as a discrete-time

random process. The source output at each time i is a random variable XI .

The distribution of this random variable (which may depend on previous source

outputs) determines the probability of a given source output. If the sourceI-
outputs (...,Xi,Xi+ 1 ,...) form a stationary random process, then the source

is said to be stationary.

A code is defined as a function which maps blocks of source outputs

into binary strings which are called codewords. The rate of a code is the

expected number of bits which are used to encode a source output. If a

source is stationary, then its entropy is defined. The entropy is a lower

bound on the rate of any noiseless code, and noiseless codes exist with

rates which are arbitrarily close to the entropy. The difference between

[I the rate and the entropy is called the redundancy.

If If the statistics of a source (i.e., the distribution of the source

outputs) are known then a noiseless code for the source may be derived

J.using Huffman's algorithm [1]. This algorithm Sives fixed-length-to-

variable-length (FL-VL) codes, a nL-VL code being one which maps a fixed

4. "



I,
2

nuaber of source outputs into a variable-length binary codeword. The

redundancy of a blocklength n Huffman code is at most na , so a Rutfman

[code may be derived with rate as close to the entropy of a source as

desired. A variable-lenSth-to-fixed-length VL-FL) algorithm (Tunstall's

"algorithm) is also knon for a given source, and If the blocklength n is

defined as the length of the codewords, then the redundancy of these codes

I. also decreases as n

I - In practice the statistics of a source are seldom known exactly so

these encoding algorithm do not apply. Universal source coding considers

this problem. In universal source coding the source statistics are assumed

to Ue in some class. The goal is to design a code which performs well

Ii (i.e., one which has a small redundancy) for all of the sources in the

class. A sequence of codes of increasing blocklength is called universal

if the redundancy approaches zero as the blocklength increases for any
source in the class.

There are a number of coding techniques which yield universal FL-VL

codes for various classes of sources. Much less is known about universal

VL-FL codes. in Chapter 2 a universal VL-FL coding technique for Markov
sources is derived, and its redundancy is bounded.

A further generalization to the source model is to allow the source

statistics to vary with time. So rather than having a source with fixed,

but unknown statistics, a random proces3 determines the statistics of the

source. This random process, called the switching process, together withr
the set of possible source statistics is known as a composite source [241.

j [Composite sources of various types are considered in a number of papers,

F_ iiJ
-- - I . . . . . .- ['Ii1II ~ l
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e.g.. [2], [31, and [8]. In Chapter I wo consider composite sources in

[ which the switching process is a Narkov chain, and the possible sources are

r imnoryless. (The outputs of a memoryless source at two different times

are independent.) The state of the Markov chain determines the probabilities

r of the various source outputs, but the state cannot (in general) be determined

by observing the source outputs. Some convergence properties for the estimate

f of the source statistics given the outputs are derived, and these are used to

bound the accuracy of an algorithm to compute the entropy of some composite

* sources. Some coding techniques for composite sources are also presented.

In source coding with a fidelity criterion the rate of a code is to be

minimized without exceeding some level of distortion. The fidelity criterion

tells us the distortion incurred when one source output is reproduced as

fanother output. There are a few possible approaches to coding in this case.

-f The outputs may be quantized individually into some finite set of values

and then encoded using a source model such as those used in Chapters 1 and 2.

Another way is to design a code which maps blocks of source outputs directly

to codewords. This is known as vector quantization. There are a number of

techniques known for vector quantization under various constraints. In

Chapter 3 we show how a technique of vector quantization for a known source

may be used to generate a code for an entire class of sources.

iti
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T CHAPTER 1

STATE ESTIMATION AND CODING FOR COMPOSITE SOURCES

T 1.1 Introduction

A composite source [241 consists of a set of subsources and a switching

process which selects one of the subsources (see Fig. 1). We consider

discrete-time composite sources with meoryless subsources and a switching

process which is a Markov chain with state space P - (l,2,...,S], S <in.

Define a state vector Z(i) - (Zl(i),...,Zs(i)) by Zs(i) - 1 if the

switching process is in state s at time i and Z8(i) - 0 otherwise. The i-th

source output is a random variable X which takes on values in an alphabet A

according to the distribution y So the probability of a given source

output is determined by the state of the switching process, and

Spxi-xz_(i), (xi1,z (i-l)),(xi.z_(i-),... -Pxi-XZ() -,z(i)(x).

(1.)

We refer to Z(i) as the state of the source. The switching process is

specified by an S x S matrix Q with elements

q(s's) - P(Za, (i+l) = ljZa(i) - l].

Note that the sequence of states (Z(O),Z(l),...) is not determined by the

outputs (X0 ,Xl,...) even if the state Z(O) is known. These sources are not

unifilar Harkov sources [1], pp. 187.

The composite source has been considered as a model for time-varying

sources (21, (3], and for this application it is generally assumed that the

switching process is slow. We do not assume this, in fact, all of our

results are valid even if the source changes state with high probability

jafter each source output.

Lt
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Figure 1. Diagram of composite source.
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Since the state of such a composite source cannot in general be

determined from the outputs, it is of interest to estimate it. Let

• i _Z(i) - [I(i) lxi.x:l.,... l(2)

j be the conditional mean estimate of the state given the pat output.

Since i(i+l) is a sufficient statistic for Xi+l, j(i+l) may be generated

from i+l and z(i) using Bayes rule [41; however, some initial estimate

1- is required.

The first part of the chapter is concerned with the properties of the

estimation process i(i). Although the method for generating the estimates

recursively is well known, very little is known about the convergence

properties of such processes. In Section 1.3 we consider the situation

where no initial estimate is available, and prove that the estimates derived

from any two initial estimates will converge. For composite source with

only two states we show that the recursive computation of the estimates is

stable. That is, small errors which are introduced in any actual implementa-

tion of the estimation procedure do not propagate. This result is not easily

extended to include composite sources with a larger state space. The mean-

square error of the estimate, or more generally the expected value of any

function of Z(i) and Z(i), is determined by the stationary distribution of

the estimation process. However, in general this distribution is not known

to be unique. We show that the estimation process has a unique stationary

distri bution, and give an algorithm which may be used to compute this

distribution to any desired accuracy.

I

.1 ___
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Next we trn to source coding problem. The determination of the sources

Ientropy is of Interest as It provides a lower bound on the rate of any

code. If the switching process is stationary then the output process is

also stationary since it is a menoryleass function of the witching process.

So the probability of a block X - (XX2,... ,Xn) of source outputs given no

previous outputs may be determined using the stationary distribution of

the switching process as the initial estimate Z(O). Since the source is

stationary we know that its entropy is

lisa -n- E PCX-xllog PEI-ml . (3)

This does not imply that the estimation process has a unique stationary

distribution. As previously mentioned, however, such a distribution exists

4. if the source has two states, and in this case the entropy is

llt1~(O) zf*d)

where jk* is the stationary distribution. For k-state composite sources,

k > 2, we do not prove that a unique stationary distribution exists.

We construct fixed-length to variable-length (FL-VL) codes for composite

sources and show that their redundancy is bounded by n'I(rlogSl + 1). (A FL-VL

code maps fixed-length blocks of source outputs into variable-llngth codewords.)

Again propagation of errors is a problem, and so it is not clear whether the

technique is implementable for long blocklengths. For the two-state case

we show that errors do not propagate. In addition the effect of inexact

knowledge of the source parameters (i.e., switching probabilities and subsource

statistics) is bounded. This result is used to construct a universal code for

a class of two-state composite sources.

!.A
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Finally we construct codes for a special class of composite sources with

an infinite state space. This class of sources has the property that the

probability of switching into any state is independent of the current state.

1.2 Convergence of State Estimates for Two-State Composite Sources

- Let 0 be a composite source consisting of two memoryless, finite-entropy

subsources with alphabet A and a binary Markov switching process. The state

at time t is Zt, a random variable taking values in C -0,11. The transition

probability matrix Q - (q(ztlzt. 1 )l of the switching process Cz tI is

specified by two values. For ease of notation let a - q(lO) and { - q(01l),

then q(o0) - 1-a and q(lil) - 1-P. The composite source 9 is determined

by ot, P, and the two subsource distributions (Yi(x);x E A) i - 0,1, so we

write 0 - (a, ,y 0 ,y 1 ). Let A denote the class of such sources for a given

I ialphabet A. Define the estimate

SEZ tIxtx- ... (4)
La_.- etK= xx..[ Then . (4)0fom Nro can

This estimate has the following property.

Lemma 1.1. Let x" A (X.1,X-22,... ). Then X" " _1 "Z0 forms a markov chain.

Proof: If z - E[Z 1 IX" - xi then
-i

I~~ 81 '=0 0 iZ.,}[l, 1x ' -1

- PZoisZ. .1 )P[zo,,sIZ-1. (5)

a PCza-slz-o-)(l-z) +PtZomsIz-lz

a . 0u.ali-.I..ZI

I
4* A
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where (5) follows since Z-1is a function of X and since the transition

probabilities of the switching process do not depend on the output&.

Given Zt a and Xt+1  x, then Lemma 1.1 implies that Z is

given by Bayes rule [4], so Z is the conditional man estimate of Zt

given observation of the source output up to tim t.

A ) P(x.. - x,zt 1 - Ilit - , Y1 (x)I(Z)" -'- - " x(6)
z t+l W f1(z PC li )- 6

t+ - E yi(x)li(z)
i,0

where
:~O z z+ (1 -a) (1- 2) ; 1-o

1. i(Z) Pt zt+I " 'K - Z- (7)

(1 - )z + a(l- Z) ; J.-l

If We define

1
p(xlz) - PCXt+ - xlzt a : - 0 yi(x)l1±(z) , (8)

:L=O

then p(xlz) is the probability that the new estimate will be fx (z) given

that the old estimate was z. If p is the distribution of ZO then the dis-

tribution of is pT, where T is the measure transformation defined by

pT ) E - .p(xI z ) p (d.) , (9)
xw A (e)r

weeBC0,1adfj.l(B) Ci z E [0,11: fi.(z) E B). The transformton T '
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has the following contraction property. The distance measure used here

L is the F-distance [5] which is defined by

f k(jh"O - n ijx-yjrr(dx,dy) ,(10)

TT E P

f where P is the set of Joint distributions with marginals P and v. We first

prove the following theorem.

1 Theorem 1.1. (Contraction property of T in the 6-metric)

If p and v are two distributions of the state estimate for a two-state

composite source with memoryless subsources and if T is the transformstion

(9) for this source then

6. (p,vT) <5 1XII ,v) (11)

$ where X A - a and a - q(11O) and 0 - q(Ol) are transition probabilities

for the switching process.

Proof: See Appendix A.V

The following corollary is an immediate consequence of Theorem 1.1.

Corollary 1.1.

;(i,vl.) <511 k l .vo) (12)

I i i
where p p.0T and v- v0 T . We now show that a unique stationary

distribution exists if I-i < 1.

Theorem 1.2. The state estimate has a unique stationary distribution p*

Sif jX. < 1.

Proof: Since the space of possible distributions is compact in the -mtric

we know that a subsequential li.t exists. For any two distributions I 0,v0

[

9" ,; '" : '
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Let v "..j Then (14) implies

P;(i,,.+J) < 1)-i  (15)

for any J. If there exist two subsequential limits p' and 10 with

P~k, - ' and 4ji - I0 for subsequences ki and Jthen for arbitrary i

Sk ) Ix j .ki )  (16)

It follows that (P1 ' ,01") 0, and thus C1 I has a unique limit. Since

P - P OT1 - P OTi+' a WT

the limit is stationary. If the alphabet A is finite then we may

* compute this scationary distribution to any desired degree of

accuracy as follows. Let pI* denote the stationary distribution. From a

distribution cJ-l concentrated on the set 0 A C' -4; 1 = ... ,nl we

generate a distribution on ' d (f(A_--k); xE A; . l,...,i] using

IIthe recursive equation (9). Then a distribution jconcentrated on() is

generated using

j n n n

(We use [ x) to denote the set containing the point x.) This algorithm is

clearly implemntable since only a bounded number of points is considered,V!
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and if we define
eA jp* (19)

f ten * A Urn. 4 :5 A 2ncI-11) (20)

A. and
!5" 1< I J +8. (21)

So we my compute j such chat pqj,p*) e e for any 9 > 0 bir -toico,

of n and j sufficiently large. Equations (20) and (21) folow sipce

(19) implies

I and from Theorem1.

I so

ej < Ijej.1 + (2n)"  (23)

In the limit as j goes to infinity (23) becomes

e* JkIle* + (2n)"l  (24)

which gives (20) and subtracting S from both sides of (23) we have

e " a " 5 1) I l ( - " ) (25)-Ib

which gives (21).

I

K I "IA-



13

The number of computations required increases linearly with both a,

I the si*ze of the vector which approximates the joint distribution, and J, the

number of iterations. The storage required increases linearly with n. If

we fix j according to the limidting error 0 by

Ii lXIiJ (26)

then j is of order log n. So the number of computations required to derive

a distribution within n"1 of the true stationary distribution increases as

n log n, and the storage required increases as n. This algorithm was

implemented for A - CO,ll, i.e. binary memoryless subsources. Two computed

distributions and their associated cumlative distribution functions are

illustrated in Fig. 2. The distributions are concentrated on 1000 points, and

* the p-distance between these distributions and the stationary distributions

is at most .006. The distributions are not smooth, and it does not appear

likely that a closed form analytical description exists.

The computed distribution may be used to bound the performance of the

estimator as follows. The mean-square estimation error is

EE(Z 2 1 E[ZtJ - E [Ztl

' 22I -EIZtI - E[Zt] (27)

2
where (27) follows because Zt a Z . If the switching process is stationary

and ergodic then

EIZ 1 (28)
t at+

I-

11J
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Figure 2b. Approximate stationary distribution of the state estimate for
a composite source with a-t - .05, yo(O) - .9, and yl(l) - .5.
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If p* is the stationary distribution of the estimate we have
! £ E[ ~21 z 2 0*(dz) .(9

iiElz1 - 1 (29)
0

Given a distribution such that i(a*, ) is small, we use the following

i - theorem to bound

A zIf2 4-1 2 d4&*I (30)
0 0

in term of k^5*,j).

Theorem 1.3. If pi and v are probability measures on [0,11 then

Is fC-j'o fdvs sup If '(W)1" ; uv,) (31)
0 0 x E (0,1]

Proof The theorem follows directly from integration by parts. That is

Up - f(x)i f(x)40,xldx
0 0 0

so 1

!. fdO -j fd¢4 -I f'(x)(v(,xl -IA[(,x])dl

1-

<-5 If'(x)l IP(O,xl - ,.[O,xlidx (32)

- sup If'(xO)WIj(,v) . (33)
x0 E [0,1]

Equation (33) follows because for one-dimensional distributions (51

(P,, - ,jjop(,l - v0,xlodx

So if f(z) " we have

- " . .. .. . - U '7...............'



We have

go (olzl - ) AH(XIZI ZI'(X0Z1-z) dz '0- )

--E p'(xjz)log P(xlz) +p'(xlz)log *I

-1 E P'(xjz)iog p(xt a)] (41)

Smintly 1(x)(1-P)+y0 (x)p],[y1 (x)or+y0 (x)(l-)1) - (42)

If p(xlz) -0 for some x E A and z E (0,11 and p'(xlz) > 0 then the theorem

does not provide a bound on A'. However, if at,P E (0,1)

then

where:8[lx+Y(~l(3

8 ~ i~r~lo~-] .(44)

So H (X0IZ..1-Z) 5 - 1: 1p (xIz) I ogt8 (y1(x) +y0 (x) 11

JX E JY1(x) -y0 (X)Ilog(6(y 1(x) +y0 (X)])

S 2 Iilog 8- +I x1pC(y0 )-3C(y 1 ) 1 (45)

where

3C(Y1) -E yi(x)log Yi(x)
E A

Recall 3C(y1L) is assumed to be finite. If we do not have cr, E(0,1) a bound

may still be derived if yi(x) > 0, for all x E A and 1 0,1. Note
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- hence the mean-square estimation error may be computed to any desired

accuracy.

Under certain assumptions the entropy of the two state composite sources

may be computed using the approximate stationary distribution. Lemma 1.1

and (1) imply that

X- - Xo (35)

is a Markov chain, where X_ (X_1 .X.2,.;.). Since Z.1 is a function of

X" it follows from (35) that if z - E[ZIX" - x-I then

R(XoIX X-) - H(Xo Z.1 - z)

" - E p(x|z)log p(xjz) . (36)

Then if p* is the stationary distribution of the entropy of source e is

- 3' 1I(Xz - z)p*(dz)
3CC a) 0R (X I Z(37)

If ; is the computed distribution, we define

a 1 a

.(e) - Io H(X°IZ' " z).(dz)

n
n ,H(Xlz.-. z)4(yi]) (38)

where

Y, n1l(i " ) " (39)

We now use Theorem 1.3 to bound

A Ic(s) . €(I (40)

'p_ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _
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that the alphabet must be finite in this case. Under this assumption

p(xlz) 6 5 so

H.(X 0, 1 z. )S 2 IXIlog -1. (46)

V In both of these cases Theorem 1.3 implies

A' !5 [ ,K*) (47)

where K < a depends only on the parameters of the source, so the entropy

may be computed to any desired accuracy. Note that the complexity of the

computation is the same as that of the computation of the stationary

distribution. This algorithm was implemented and the entropy was computed for

some two-state composite sources with binary alphabets. In Fig. 3a a family

of curves is given. In each curve y0 (0) - yl(l) is fixed and * -0 v =ies

from 0 to .5. The entropy increases to one as the switching probabilities

increase as would be expected. The same curves r*.ut if a ne 0 are replaced

by 1-a and 1-0. In Fig. 3b y0 () - .001 and yl(l) - .5 for all curves.

The ratio ct/(a+P) is fixed in each curve, and 0 varies from 0 to .5. So

in each curve the proportion of time spent in state 1 is a/(ot+P). Again

the entropy increases as the switching probabilities increase.

The p-convergence result may also be used to show that estimates which are

derived using different initial estimates of the state converge. Consider

i 4 i
two different initial state estimates, z0 and I If zi( ) and zi l ) are0 0i

the estimates at time i derived using the recursion (6 ) when x = (xl ... xi)

is the output of the source, the following theorem shows that these estimates
i-1

converge on the average. Define j&ilz) - fl P(xj+ z4(xJ)), where p(xjz) is

from (8). So XI( Jz) is the probability that x i is output given iaLtiil

1i estimate z0.
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,j"(yO)m.9

* 3 --- rrT .95r-r- r--

a) ay - yo y 0 ) - y1 (1)

a.'-

- - - -- - - - -

b) y0 (O) - .999, y1(O) - .5

r Figure 3. Entropies of so=a two-state binary composite sources.
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Theorem 1.4. With zi(x) and li.(!) as above (andk 1l-a'-0)

oo .r ,.,,")', lzo) < kI Iso-zol - (48)

Proof. See Appendix A.
Corollary 1.2. If r is any Joint distribution of z0 and then
Co o l r 1.2 01

E ETr[Fi(Zoo) - I 1 I Fi(zO$,o)dr (49)
0 0

_ lxii (50)

since Iz0- 41 5 1 for all z0 and ;0"

Theorem 1.4 implies that the recursive computation of the state estimate

is stable. That is, suppose that some error ei , where lei) e £, is introduced

in the computation of the i-th estimate. Then if the initial estimate in the

computation differs by some e0 from the actual initial estimate (i.e., the

estimate derived from observations of all past source outputs), the average

error after i steps is bounded by

I z x Ai i L i )I i (- I o) <- i' I'IeOI +g€1 111  (51)

Here z i(x) includes the computational errors ei.

Now suppose that the parameters of the composite source are not known

precisely. That is, suppose that the source is S - , P,y0 ,YI] and ye use

the parameters for another source c = [if,19,0,¥10 in the recursion (6).

Under the assumption that the parameters for 6 and cp are within e the

average error in the estimate derived using the parameters for c is of ord

order c. Here we must assume that G,cp E A'(6) for some 6 > 0 where

Ii
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A'(6) (e E A: p(xjz) k 6, Y x E A, u E [0,11). (52)

This condition is satisfied if, for example, yi(x) 1 6 > 0, for all x E A

L and i - 0,1. Again this implies that the alphabet A is finite. We also

include computational errors ei, leil S . Let so and so be two initial

A Aestimates of the state ZO. Further let zCx ) and z1 (z ) be the estimates

derived from these initial estimates using the recursions for e and cp

respectively. Note that now these estimates are derived from different

recursions and that z±i( ) includes computational errors so

i A i-l
ZCQ )  f (x1 i( ) + ei (53)

where f is defined as f, (6), (7), but with the parameters for cp. Then the

following is true.

Theorem 1.5. If 8,p E A'(6) then
Fi (0, 0 P

i
I

:r. IX + Kfl- 1X0 13"  (54)

where

K 8232D +3e2+6 3 ] + C,

- p 'zo) is the probability that x i is output from source 9 if the initial

estimate is z0, and X1e A -a

Proof. See Appendix A.

So the estimation procedure is robust; that is, small errors in source

parameters do not cause unbounded errors in the estimates.

I.

1, _ _ _ _ _ _
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1.3 Convergenc, of State Estimates for S-State Composite Sources

Now consider the more general case where the Markov chain has state

space o - El,2,...,S) and selects one of S subsources which are discrete

memoryless sources with alphabet A. Let y (x) be the probability

[ that a letter x E A is output given that the Markov chain is in state s E a.

Let A denote the class of such sources for a given A and 4P. Define a

- state (row) vector Z(i) - (Z (i),Z 2 (i),...,Zs(i)) by Zs(i) I if the chain

is in state s at time i and Z (L) - 0 otherwise. Let Q - q(LIJ)) be the
.

state transition matrix. We define

i where Xi is the output at time i. So .(i) is the conditional mean estimate of

Z(i) given the outputs up to time i. A recursive equation for Z is [6],

v Z(i+l) - i(i)T(x)[i(i)T(x)j] "' (56)

where X + x is the source output,

T(x) Q P(x), (57)

j(x)F~
j P(i) -j y2(X) j(58)

is a diagonal matrix and 1 is a column vector of Vs. The probability that

Isource output X 1 a~ x given i(i) - z is

Iip(xI:) zT(x)j (59)
Ii

4 [_ _ _

-*
- - - - -
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Le t x -X x zE A, and define a astrixT by

()- 11 T (xi) .(60)

L-1

Then if Z(0) and x consists of the first n outputs, the n-th state

estimte is

and the probability of x given z is

(Ax (A)(62)

A source e E A is specified by Q and CP(x): x E A) so we write 0

Let P (**) denote the set of probability distributions on a*. We now show

that under certain conditions ifz sand 1 are in P (ps), then the estimates

* generated from (61) converge. Define

A~)- CO E A: q(ilj) 2: e > 0, i~j Ed) (63)

Then we have the following theorem.

Theorem 1.6. Let 0 E it(e). if x and i are probability vectors on.OP such

that Lxjz) > 0 and (Mji) > 0, x - (x 19... 9xn), then

* r where

C 2 2(65)
(-(S-I)G) 2 C2

and 1-11 is the norm defined by 11!i - .s mx(I u iviI:l1~ is n).

Proof. See Appendix A.



The rate of convergence here is not as fast as that of the average25

convergence result for the two-state composite source, but the convergence

bound holds for any sequence of outputs and not merely an average. The

restriction that we must have P(xjS) and (x ) positive is of no real

Importance, since if P1?(xj) is zero, this means that the estimate z is

incorrect so we may choose a new initial estimate z' such that (xlz') > 0.

* A more important drawback here is that the theorem does not imply that the

iestimates converge at each step (in fact they do not in general), but only

that after n steps they are within Cn ' . The theorem does not imply that a

computed estimate remains close to the true estimate despite small

computational errors at each step.

Theorem 1.6 also applies in the more general case where the transition

matrix Q depends on the current output x. So we have a family of matrices

EQx: x E A). If we assume that the elements of Q are at least e for all

x E A, then the theorem holds. The only change necessary in the proof is

that Q is replaced by Qx"

1.4 Generalization to Arbitrary Subsources

Some of the estimation results also hold for memoryless sources (not

necessarily finite entropy) having an arbitrary alphabet A. Consider first

the two state composite source. Where previously we assumed that the

alphabet A was countable and that the subsources had finite entropy, here

we assume that the sources are specified by two probability measures PO

and P1 on an alphabet A. If we define Tr - k(P0 +PI) then the Radon-Nikodym

derivative d exists, i - 0,1. Then given the i-th state estite Zi z

and the (i+l)-st source output Xi+l we have

1.
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- Zl+l Fx(Z) 1 P (66)

di W % i(z)

which is Bayes rule for this case. Define

1 dP"
P(xlz) - E (67)

so that

P(Xi+lE BIZ z) -' p(xjz) r(dx) . (68)

Then if p0 is the distribution of ZO, the distribution of Z1 is given by

pl(B) - p(xlz) o (dz) YT(dx) (69)
A f (B)

If we use the recursion (69) in place of (9) then Theorem 1.1 holds for these

generalized subsources. The only modifications necessary to the proof ofdPi

Theorem 1.1 are to replace yi(x) by -L, i - 0,1, and to replace all

suumations over the alphabet A by integration with respect to the measure Tr.

Corollary 1.1 and Theorem 1.2 follow directly from Theorem 1.1 so we know

that the state estimate Zi has a unique stationary distribution. However,

the computation of an approximation to this stationary distribution may not

be performed as it was in Section 1.2 because the alphabet is not finite.

The average convergence of Theorem 1.4 also holds, if we modify the proof

in the same way as the proof of Theorem 1.1. Theorem 1.5 is not easily

generalized though, as it was necessary to assume finite alphabet size.

i'
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The convergence result (Theorem 1.6) for S-state composite sources also

generalizes. Let Pip i - 1,2,...,S be probability measures on A for the
S

subsources. Then if we define Tr O S E Pi, the Radon-Nikodym derivative
dP1  i=1 dP
- exists, £ - 1,2,...,S. if we replace y1 (x) by -:(x) in the definition

of P(x) (58) then Theorem 1.6 holds, and the same proof is valid.

. 1.5 A Coding Technique for Composite Sources

Let e be a composite source as in the previous section. The switching

I process has state space (' = (1,2,...,S) and each subsource is a discrete

memoryless source with alphabet A. If the state of the switching process

is s then the probability of the source output x is Y (x), independently

of previous states and source outputs. Let P (.,) be the set of

probability distributions on & and define e E 1P (6P) to be the probability

V (row) vector whose J-th element is one. If the switching process is in1.
state j at time t we define the state Z(t) - eJ . The transition probability

I. matrix for the switching process will depend on the current state and the

current source output. So we define

and qx(iIJ) " PL(t+l) - eilZ(t) - X(t) - X) (70)

Qx - q ( lj): i~j El .P (71)

We do not require the elements of Q to be bounded by some e > 0 (as wes the

case in the previous section). Note that this class includes unifilar

Ii~.Markov sources, that is, sources where the next state is a deterministic
function of the current state and source output. For these sources the

I. elements of the matrices Q, x E A, are either zero or one.

I I I...
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We nov construct a variable rate code for a given composite source and

I bound its redundancy uniformly over all initial state estimates. The codes

considered here are fixed-length to variable-length (FL-VL) codes, so they

I encode fixed-length blocks of source outputs into variable-length binary

codewords. The blocklength of a FL-VL code is the number of source letters

encoded in a block. The n-th order entropy of source 0 given initial state

estimate i(O) -.E is given by

Hn(0~!) = -n , ]._) log (z) (72)x E An

where

and T is as defined in (60). So Hn(0,:) is a lower bound on the rate of any

blocklength n code for source 0 and initial state estimate z. Let £n(Q)

be the length of the binary codeword for the output block x E An. Then the

4rate of the code is

R! .o.e> "R) _- E ,n (., loc& (7,4)

and the redundancy is

S. rn(O,_) i .(0,1_) - (,.). (75)

If we let z -(zl...,zS then

i-l

!5 .a,p(xj'). i E . (78)

Ii
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So to design a code for e and .(0) - z we first design codes for initialI itt s~tee
state estimates 0 , i E &, and combine these S codes into a single code by

prefixing each codeword with rFog si bits. The code for initial state e

is the Shannon code for probabilities ?(xj! ), so the length of the codeword

3 for x is

aAi) - Pd i)i (79)

s i -log (.l ) •(80)

The codeword for x in the combined code is then the shortest of the S

possible codewords, so the length function of the combined code is

x) - min(A n(x): i E W] + Flog si (81)

:5 -logE txU~x-Ie'); i. E *)I+ i+ riog si (82)

s -log [IQxI's)] +1+ rlo8 si ; z E P () (83)

The rate of the code when applied to e with Z(O) - z is

R(e,_.) 5 n'El+ rlog S1 - _ n  (EI-)log s(E_.)) (84)

= ln(ej_) + n'l + Flog si] , (85)

and so its redundancy is bounded by

rn(e,z) n'll+ flog si], (86)

V for all zE P(W)

F.-
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One problem with this coding technique involves the propagation of

errors. To determine the codeword lengths £ n the probabilities of the

codewords must be determined. This requires n matrix ultiplications, and

there is no guarantee that errors will not propagate. Theorem 1.6 implies

1l that the effect of an error on one step will decrease exponentially, but

does not imply that the effect of small errors made in each step will remain

small. Propagation of errors is not a problem when coding for a unifilar

Markov source with finite space and alphabet. For such a source the

probability of a source vector x given initial state O is

n

! i-IP(X S)"[SO (nS) (Xls, (o)7)

- n p(xl s ) 0  (88)
x EA sEd

where N[(x,s),(,sO)] is the number of times in the block x that the letter

x occurs when the source is in state s given that the initial state to sO.

The product (88) may be computed using at most IJA.WI maltiplications for

any n, so the effect of computational errors need not increase as n becomes

-large. Some further convergence result is required to show that the code

for composite sources is implementable, although in view of the convergence

I. result of Theorem 1.6 it is probable that the computation is stable.

I
I

SI

,~ . ,~ -,: ]
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Ott E7] considers the same coding problem but assumes that the encoder

Iand decoder have the initial state estimate for the source. The code he

r constructs is simply the Huffman code for the source given a specific

initial state estimate (and is optimal for that estimate), but it is not

* universal with respect to the initial state estimate. He does not prove

any convergence results which would indicate that the computation is stable.

One modification which improves the code performance is as follows.

Since only 2 n codewords of the S x 2a possible codewords are used, the

additional codewords may be removed and the remaining ones shortened. This

technique is employed in Section 4 of [11]. Define

- 2 n(Z (89)
" E 2 ()

SEA

* Then

A (x) t r-log p* )l (90)na

so the Shannon code for p* performs at least as well as I

n n

The performance of codes with blocklengths n - 5, 8, and 10 which

incorporate this modification are presented in Fig. 4. The sources for

*' which the codes are designed have y0 (O) - yl(l) - .9 and o = f between

0 and .5. Each curve gives the performance of a set of codes of the

same block length. The rates and source entropy are given in Fig. 4a,

and the redundancies in Fig. 4b.

I

It

Ii~
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3.7
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1.6 Stability of Coding and Universal Coding for Composite Sources

If the composite source consists of only two subsources as in

Section 1.2 we may show that the effect of computational errors on the

redundancy may be made small. This result is implied by the following

theorem which bounds the mismatch redundancy; that is, the redundancy

which results when a code designed for a source c is applied to another

source G. The theorem includes the effect of computational errors. We

return to the notation of Section 1.2. Let 8 - y ,A,yOpyl and

C- C,,0 ,y1 be two composite sources (recall that a - q(l0) and

- q(011) are the transition probabilities for the switching process).

We assume that e,cp E A'(6) where

A'(6) A (9 E A: p(xlz) a 6, xE A,z E [0,11) . (91)

Let %9( CxiIo be the probability that x - (xl,...,xi) is the output of

*(i~z i
source 8 given initial estimate zo, and similarly for f Izo). Let zi )

be the estimate of the state used in designing the code. So ii(xi) includes

computational errors ei as in Theorem 1.5 and we again assume that

eil 5_ C. Then if the initial estimate is z. the mismatch redundancy is

r'(El0)- n 1+ E ja tnlz 0 )[ min Cr-log (xn1k) Log (f ))

nn - (92)

Theorem 1.7. If G,cp E A'(8) and corresponding parameters (i.e., switching

probabilities and subsource statistics) for sources 9 and C are within €,

then if An is the code designed for source cp we have

rn (zn,) Kn + Ke (93)

Ia'n

_' _ ,
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where
K 2 + 6-1 og • ( -l- -a-011 "I  (94)

and

K' 6"1 log e [-I--a ]-I1 6 2 13[ +3e 2 +9 3 +5* +2 2j (95)

Proof. See Appendix A.

We may use this mismatch result to construct a sequence of minLmax

universal codes for any subset 0 of A'(8). A sequence of codes

(A*: n - 1,2,...) is said to be mininaux universal for a class of sources 0

if the redundancy

rn(A*,9) - 0 (96)
n n

uniformly on 0 as n -. We construct the code as follows. The alphabet A

is assumed finite so let A = E1,2,...,J]. Let iJ and K(m,x); m - 0,1,

x - 1,2,...,J-1 be nonnegative integers less than n. Define a set

Bn(i,J,K(e,0)) E9 E 0: o E [in 1,(i+l)n l], 0 E [Jn ,(J+l)n' 1.In
Ym(X) E [K(mx)n 1, (K(m,x)+l)n1 ]]. (97)

Note that Bn has dimension 2 + 2(J-l) - 2J since each subsource is specified

by J-l parameters. From each non-empty set Bn choose an element c called

the design point source. The number of design point sources is bounded by

2J
n , since there are at most this number of sets B . A Shannon code £n,4

is then constructed for each of the design point sources as in Section 1.5.

I A prefix of length r2J log nI which identifies c is attached to the codewords

v in the code I n," The universal code is then constructed by combining these

codes. The universal code is uniquely decodable since the prefix

[

,.
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specifies cp and since the codes A are uniquely decodable. The encoding

I procedure is simply to choose the shortest codeword of the n2 possible

codewords for a given output block x, so the length function for the

universal code is

.* -() ,2J log n1 + 1 ,in4n (x)) (98)
n CP n,V

for any 6 E I there exists a design point source cp whose parameters are

within n of the parameters of 6. Let cp be this design point source for 6.

Then we have

rn(A*9) < n' 1 r2J log n + r (An,cp,6) (99)
nn n

Since r (A ,) is the mismatch redundancy of Theorem 1.7 with c - n

we have

r(A*.) n'lC12j log n +iK +7 (100)

for all 6 E 4 and the sequence of codes A* is minimax universal.
n

If some of the source parameters are fixed for all 0 E A so that A has

dimension M, where H < 2j, then 2J log n is replaced by H log n in (100).

To illustrate this procedure, Fig. 5 contains a graph of the redundancy

of a blocklength 8 code for the class of binary two-state composite sources

with y0 (0) - yl(l) - .9 and a - in (0,1]. The code was constructed by

combining codes designed for a '- - .05, .30, .70, and .95 respectively.

The redundancies of the codes for ot -. 05 and .30 are also graphed over the

class of sources. If these curves are reflected about a -.5 then they

become the curves for a .95 and .70. Note that the maxi-mm redundancy of

the combined code is such less than those of the other codes.

, I i i , , - .- ,, .: -
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1.30

----- combined co...

1 .0- T

V 8.-0.- ,

.2 .4- aI .

* "-r- 3

e~e i 1 .8

4 . .284e6 . .

Figure 5. Redundancies of three codes over the class of two-state binary
composite sources with yo(O) - y 1 (l) - 0.9 and ain.

IL
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1.7 Codins for an Infinite-State Composite Source

j The coding technique derived in Section 1.5 applied to composite

sources with a finite number of subsources. We now construct a code for

a certain type of composite source with an infinite state space, and show

-that the rate of this code approaches the entropy of the source.

The state space zP is the class of all memoryless sources with alphabet

j A - (1,2,...,J). We define W such that if y (yl,...,yj_1) is a source

in o then

Y Yz(k) Ptx = kIzi .Z)

. Yk (101)

where

1- J-- (102)k-l

At each integer time i the switching process Z1 changes with probability

a. If it does change then it takes on a new value according to a

probability measure P* on & which does not depend on the previous state.

So each time the source changes state the effect of the past states is

eliminated. We first assume that P* has a density which we denote z*. So

if Z = E S then Zi+ 1  with probability 1 -a, and

P EZ L B) - P*(B) (103)

with probability a, where B is a subset of S.

The estimate of the state Zi given the past outputs (Xi,xi.1,...) is

a probability measure PI on&* such that

P (B) - PEZ i E BIXi -xiXi-l -xi l,...) . (104)
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If we assume that this masure also has a density Zi we may derive Z +I

from Z and X +1 using Bayes rule. Let pZ be the density of Z, given

0 a z 0 ' Then we have

S=atz* + (l-a)z0 . (105)

A

Further, if PXiZ s the joint density of Z and X1 given Z 0  z 0 then

px'z(,k) - PCX kIZlaI]pz(-)

- ykPZ(y) (106)

So if X1 - k and Z 0 - z 0 then Z is given by

p/ X C,k)d

-lz fk(zO,) xzik
SX,Z

,k[ * ) + (y)dy

S)+(107)

a I y Z*(y)dy + (1- ot)I Ykz 0 (Y.)dX

where Si- n1 ... ,Y.). since Z, is of the form

l.-) " Yk[Kz*() + K:zo(y)] , (108)

where K and K' do not depend on y, all subsequent densities Z derived

from ZI will be of the form

Z(Y - 11 n y4 IJ[K(ml,...,mj)z0X) +K' (arl...,aj)x*(y)]
m ,...,a j J-1 (109)

E ,9 i
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where K() and K'(.) do not depend on y. So although the estimate Z is

infinite dimensional, given z0 and z* only a finite number of constants

K(,) and K'() are required to specify j for any L. Further, knowledge of

the moments of z0 and z* is sufficient to compute these constants.

The probability that X1 . k given Z0 W zo0 denoted p(k , is the

denominator of (107), and the probability of a block of source outputs x,

denoted (jz0) , may be computed by generating Zi recursively from (107).

Given this estimation procedure we construct a code as follows. Compute

the probabilities '(xjz*) of output blocks x E An, where z* is the density

of P* as previously defined. The code is then the Huffman code for these

probabilities. -So if the length function of the code is An then this code

minimizes the redundancy

rn(e~z*) E nX(_(z*)(A n() + log QX1z*)1 • (110)
xEA

Let 3C() A H(XoX.1, ... ) be the entropy of source 6. The probability of x

given no previous source outputs is (xIz*) since z* is the stationary

distribution of the switching process. If we define R n(e) to be the average

rate of the code A when applied to source 9 then
a

Rn(M - n' 1 An N(-z*)An ) (11)

The following theorem gives an upper bound on the average redundancy of the

code A.
n

Theorem 1.8. Let r n ( O ) - n (8) - X () be the redundancy of the code An. Then

r (8)n' (I l og ) . (112)
n

Miss



I ! 40

Proof. See Appendix A.

I We asstm that both P* and the estimates Pi have densities. If they do

not the estimation procedure may be modified as follows. Let Tr - k(P*+P ),
0dP* dpi

where P is the initial estimate. Then d- and - exist for all i 1 0.

If we replace z* and z0 by M and dif in (105)-(109) and integrate with
r e p c o T ,d p T e c o e i s th e n

respect to iT, then (107) gives a recursion for - . The code n

defined as before and the redundancy bound holds.

II

i

[
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AV
CHAPIER 2

UNIVERSAL VL-FL CODING FOR MARKDV SOURCES

y- 2.1. Introduction and Review of Previous Results

An efficient universal noiseless source coding technique is presented

in (111 for memoryless sources. It is extended to unifilar Harkov sources

in (121 and [131. The codes constructed in these papers are fixed-length-

to-variable-length (FL-VL) codes; that is, they encode fixed-length blocks

of source outputs into variable-length binary codewords. We use the sam

basic technique to construct universal variable-length-to-fixed-length

(VL-FL) codes for unifilar Markov sources. The performance of these VL-FL

codes for binary memoryless sources is compared to that of the FL-VL codes

constructed in (111. We show that for medium blocklengths (- 10) the VL-FL

codes perform better and that for long blocklengths (--100) they perform

about as well as the FL-VL codes.

Next a review of some terminology of universal noiseless coding (111 in

a fixed-length-to-variable-length (FL-VL) framework may be helpful. Let A-

be a class of stationary sources. Each G E A has a probability function

P. which gives the probability of the various possible strings of outputs.

A FL-VL code of blocklength n maps blocks of n source symbols into variable-

I length binary sequences. Let x - (x 1 , ... ,xn) be a block of source outputs.

A FL-VL code is specified for our purposes by the length function £nQ )
which gives the length of the codeword for x. The rate of a FL-VL code

Iapplied to a source 8 is

Sn (An ) n n ()P ( )  (113)

Ii
x E A
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where An is the set of possible n-tuples from source 9. Defining the n-th

order per-letter entropy of 8 as

RHn(e ) ---n 1  E Pe()log pe( ), (114)
xE An

the n-th order redundancy of the code is

rn(An,O) - R n(A ,) - H (() (115)

Let

rn(n) A suptr n(An8): 8 E A]. (116)

A sequence of codes A1.12, ... is weakly universal if

Rn(AnL6) - H(G) V 9 E A (117)

as n - where H(9) - lim H (8) is the entropy of the source 6. It is
n -* a

-- strongly universal if the convergence of (117) is uniform and minimax

* universal if f(L) - 0 as n -. Let Kn be the set of blocklength

!t in FL-VL codes. We define the n-th order FL-VL minimax redundancy as

6 F(n) - inf(?n(An) n  n E • (118)

We now define similar quantities for VL-FL codes. A VL-FL code maps

. tvariable-length strings of source outputs into fixed-length binary codewords. The

performance of a VL-FL code is determined by a set r which consists of the

variable-length stringsof source outputs which are encoded. The blocklength

3 of a VL-FL code is the length of the codewords and is denoted by n. So

n - riogjrp where Irl is the cardinality of the set r and ral represents

I

j i II I II
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the smallest integer not less than a. since r completely specifies

the code we refer to r as the code. Let A(x) be the number of letters

in the string x.The rate of a VL-FL code r applied to a source 8 is

R(re) - n[18(r)f1  (119)

where

is the expected length of the input strings. We may define a lower bound

on the rate of this code as

* 3(1,e) - E peX)1og PG(X) (A0(r)] . (121)

I So 3(r,9) is the entropy of the set of strings x E r divided by the expected

length of these strings. The redundancy of the code r is defined as

r n(r,e) - R J,8) - XCT,9) (122)

and the maxi-lim redundancy is

* n~r sup(r n (f,e): e E A) .(123)

IIf 3eis the set of all VL-FL codes of blocklength n then define

*a I~(n) - infCun(r): r E K) .(124)

For thedefinitions (113)-(124) it is assumed that each source e 6 A ise

ii tationary. A unifilar Markov source is stationary only if 
it is in its

steady-state distribution. We do not wish to assum that the sources are

[ in their steady-state distributions since we are interested in applying these



L" codes to sources with slowly varying probabilities p8. For this reason

the codes which we construct are universal with respect to the initial

state of the source.

Let 8 be a unifilar Markov source with alphabet A - E,2,...,JI and a set

of states *0 - (l,2,...,S). The properties of the source 9 are given by an

initial state s and a pair of J X S matrices P- Cpe(xls)j and Fe -Cfe(x,s))

where p,(xls) is the probability that letter x is output when the source is

in state s,, and f8(xs) is the state into which the source moves following

this event. The probability of a string x - (xl,...,xk) which starts with

the first output letter is

k
pe(x) =i pe(xili.) (125)

where

si  fe(xii,Si-l) . (126)

If x- (xml,...,xk) thenM~k

S *k

pe )- : P8(jtls o) n Pe(xm+lsi.1)
- i-1

where P*(Jlm, S) is the probability of being in state j after m steps

if the initial state is aO, s - J, and sj - f(xm+. ,si. 1 ) , i 1,....k-1.

We assume that A is the class of all unifilar sources with a given

alphabet A, state space ., and transition matrix Fe. (So Fe L the same for

all e E A.) A source e E A is then specified by an initial state s0  and

a transition probability matrix P.. The sources in A are not stationary but

I the quantities defined in (113)-(116) are valid if we assume that x -

(xl,...xn) is the first block of n source outputs so that pe(x) is given

I- by (125) and (126).
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1.

For VL-FL codes there are other difficulties. First 3C(r,O) depends on

the code r, so the code with the smallest redundancy r (r,9) does not
n

necessarily have the lowest rate R (r,). For memoryless sources 3C(,e) isn

the entropy of the source, so it is independent of r. This is not the case

for unifilar Markov sources. In fact, even if a source is in its steady

state distribution before the first string of source outputs is encoded, it

need not be afterwards. The VL-FL code induces a distribution on the states.

However, we may show that the lower bound of (121) is independent of r in the

following sense.

Let Ce, il- 1,2,...,S] be a set of sources in A with transition proba-

bilities p8  p8 such that 8 has initial state I. Suppose that some set of

S codes with encoding sets r achieves 3C(ri0) i-1,...,S. Then from the Kraft
i

inequality and the fact that for any c E A

- -Ep (X)log p (20 k -Zpei )log P8 (D

with equality if and only if p8i () - p (x), the length of the codeword

for x E r i must be -log p9 (x). (Note that this set of codes is

VL-VL.) Now if we wish to determine the total length cf the codewords t-sedI-
to encode a block z of m consecutive outputs with this set of codes the

* " problem is that the end of the block z may be in the middle of an encoded

string. However, due to the structure of the codes this problem may be re-

* Isolved by dividing codewords. Suppose that one encoded string x has k letters

within z and I£x)-k outside z. The length of the codeword for x is

-log 8  ) and sincePi

I

I N l I I

* __.,. .. , i il l l ;
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p. -in Pe (xjlsJ-1) (127)

-" 11 P (xjIsj.l) i Pe (x i sjx1 ), (128)
"J-l J-k+l

Il k
the part of the codeword due to letters within z is -log j 1p (x is-P)

i=1
independently of the following symbols. So the (not necessarily integer)

number of bits used to encode z with initial state so is

log pe(x idsi) - -log pe (!z) (129)
i-O

where z is encoded as x(1) , 2 ,...,x Q (  (J) is not necessarily an entire

encoded string), and p,(xjs) is the probability of x for source es" The

expected rate of this set of codes is

-l

-m E p _.ls0)log p(.iso ) - Hm( j (130)"z E Am 8 ~s)o 0 ~s) (

where e = (pq,s 0 ). So a set of codes which achieves Y(r£,8i) for all

initial states achieves the m-th order entropy given any initial state.

If we have a VL-FL code r such that

SRn (r* ,e) _ 3 + C (131)

where c is independent of i, then the expected rate of this code over m

outputs is

. Rm(Oj) 1m(Oj) + € (132)

mj m

Vi
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from (130) since £ is simply an extra per letter redundancy. So given

the bound of (131) which depends on the set r we may derive a performance

f bound (132) which is independent of F

If a sequence of codes Fn is mLnimax universal then from (132) and the

fact that A contains sources with all possible P. and initial states so,

the rate of these codes approaches the m-th order entropy if we average as

* above. So if a VL-FL code r has

n(r' ) =  (133)

* and a FL-VL code .. hasn

s- n n

then the two codes have approximately the same rate when averaged over a

block of source outputs. A FL-VL code and a VL-FL code with the same

number of codewords (due to the lack of structure in the codes the number of

codewords is a good measure of complexity) have blocklengths n and nlogJ

respectively. So if we wish to compare codes of the same complexity,

then we should compare the performance of a blocklength n FL-VL code to that

of a blocklength nlo&J VL-FL code.

In (14] a delay parameter d is defined by d n for FL-VL codes and by

dd infd* o(r): 8 E A) (135)

for a VL-FL code r. The minimax redundancy, denoted iF(d) and iV(d) for

FL-VL and VL-FL codes respectively, is defined as the mininm of ;n (I
An nI. or r n() over all codes whose delay d does not exceed d. This may seem

[ somewhat unnatural, but the number of codewords is approximately the same

, ~I

. .-.-



48

for all codes with delay d, so this approach leads to the same comparison

as that mentioned above. We show this as follows. First since d* - n

for FL-VL codes we have

it, (n) -A (n (136)

However, R,(n) and Rv(n(logJ) "1) are not quite the same. Any blocklength n

VL-FL code rn satisfies

5 n(logJ) "  (137)

if A includes the source S which has all letters equiprobable in all

states. This is because the entropy of e is logJ. So we have

Sv(n) z iv(n[logJl " ) . (138)

Further, if r achieves a minimax redundancy RV(n) then
n

* ,(t") > nC(r)+(n)] " I  (139)

so

d _* n(logJ + F

This implies

PRV(n) < k (n[logJ + RV (n)]"-) (140)

Since RV(n) is O(n log n), we have

Rv(n), A V(n[logJ] °1)  •(141)

So any bound on RV may be used to derive a bound on .

I.

I I I
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There are a number of papers with results on the =Lnimax redundancy of

FL-VL codes. In E151 and (16] asymptotic upper and lower bounds are derived

for unifilar Harkov sources which show

aF(n) 4 n I(J-l)S log n + 0(n " ) . (142)

These results are only asymptotic, however, as the O(n ) term is not

evaluated. An upper bound

RF(n) - k n -1 (J-1)S log n + Kn"1  (143)

is derived in [121 and the constant K is given explicitly. For memoryless

sources a lower bound is derived in [51 which shows that

RF(n) n' (J-l)log n - K'n"  . (144)

Again the constant K' is determined.

There are fewer results for VL-FL codes. Lawrence [171 derives a

universal VL-FL coding technique for binary memoryless sources which has

n(rn log n + Kn (145)

(This bound, however, does not appear in the paper.) In [141 results of

Khodak are mentioned which state that

-lISRv (n) - O(n log n) (146)

for memoryless sources. In the next section we show that

RV (n )  (log J)n [4 S(J-l)+l]log n + in-' (147)

for unifilar Markov sources.
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2.2. Universal VL-FL Code Construction

First we introduce the optimal VL-FL coding procedure (Tunstall's

algorithm (181) for mamoryless sources. Let e be a discrete memoryless

source with alphabet A - tl2,...J) and let p0 (X) - PXx-NJ, z E A be the

probability that the letter x is output. A VL-FL code maps a variable number

of source outputs into a fixed number of code symbols from an alphabet C. We

will assume that C-10,11, i.e., that the code is binary. Tunstall's algorithm

generates a rooted tree whose terminal nodes (leaves) correspond to code-

words. There are J branches leaving each non-terminal node, and these

branches are labelled with the J source symbols. The encoding procedure

consists of starting at the root node and traversing after each source

output the branch with the corresponding label. When a leaf is reached,

the codeword assigned to that leaf is sent and the procedure is

repeated. So each leaf corresponds to a unique string x= (xl,. ..,xk) of
k

source outputs and has probability pe(X) - n pe(xi). The algorithm

generates a larger optimal tree from a smaller one by adding J branches(
to the tree at the leaf with the highest probability. So the highest

probability leaf is divided into a set of J leaves. It is easily seen that
the ratio of the lowest probability leaf in the tree to be highest is not

[ less than at minpe(x): x E X].

In Figure 6 this procedure is illustrated for a binary memoryless

source with p(l) - .7 and n - 2 (4 leaves). The encoding tree is formed in

r three steps with the most probable leaf being extended at each step. Each

of the final set of input strings r is assigned a codeword of length 2.

I

II
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.3
0

a. 2 leaves1

.7

.34

c. 4 leaves

.494

0.4 l a e 1 0.2
1 1 0 32 

10

110 3 10il 31

Figure 6. Construction of a Tunstall code with blocklength 2 for a
binary mmoryless source with p(l) -. 7.



..

52

We now extend this algorithm to coding for unifilar Markov sources.

A VL-FL code for & unifilar Markov source 9 is generated using an algorithm

much like that for memoryless sources except that now each node of the tree

has a state associated with it. The probabilities associated with the

branches are given by p,(xis) where x is the output letter which labels the

branch and a is the state of the node which the branch is leaving. The

algorithm again consists of extending the most probable node, where this

probability is now given by the product of the transition probabilities of

the'branches traversed in reaching the node. It is not clear that this

algorithm is optimal since in general to actually encode some block of source

outputs S encoding t~-es are necessary, each designed for P9 and F9 but for

different initial states. The structure of each of these S trees determines

the probability of being in a particular state after encoding a string of

source outputs, hence the probability that a particular tree is used is

affected by the structure of all S trees. It is not necessarily true that

! generating these trees independently (as is done here) is the optimal encoding

* algorithm. However, the algorithm does yield code trees which have

I asymptotically good performance as will be seen later. Further, in each tree

the ratio of the minimum probability leaf to the maximum is not less than

Ii 1191

*a - minp (xIs)'; xE A, a Ed] . (148)

We use the Tuntall algorithm for individual unifilar Markov sources

to construct a universal code for a class A of sources as follows. Let

[m M [f L; L - l,...,*y m be a finite subset of A such that if c E #m , then

there is a source fpj E On with initial state j which has the same transition proba-

I bility matrix as t, for J 1,2,... ,S. Let r(i) be the encoding set of a blocklength

lo
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m code designed for the i-th source cp, E The codes r are constructed

using Tunstall's algorithm as above. The universal code r is defined as~n

follows (n is defined in terms of m in (150) below). A string x is an

element of r If xE r f() for some i and (x ) (J) for any j W 192...,

where I is a non-empty string of source letters (* represents concatenation).

So the tree for r* contains all nodes from the trees for r(i) I -,2,...,
n U' M

Now
Y

so the strings in r may be encoded into codewords of length
~n

nsm+rlog . (150)

The rate of this code * when applied to a source 6 is
n

(r*e) - * (151)
nnn

I <m + rlo 0  ]I!(r(k))l (152)

for any k 1 l,2,...,y. This follows because by its construction the

expected length of the sequences in r* must be at least that of any of
n

the sets r There are two sources of redundancy in (152) which we ust
m

bound in order to bound the redundancy of the code ra. The first is the

rlog yl term which is due to the fact that jr*1 may be as large as y,2".
m na

The second factor is the difference between

.m 5x[Z (I)): i W 1'...Y,, (153)

£and Z r,), where mis the Tunstall code designed for source 6. So the

second factor is derived from the mismatch between the actual source e and,I.
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the source for which the code r ( i ) was designed (that source being some

,E I) As Y increases the effect of the first factor increases and

that of the second decreases. Blumer (13] shows that for

log y* a I S(J-1)log m + K (154)

T. where K does not depend on m, a set #m may be constructed such that

maxft-n-r(e;tpi): i - E,2,...,a): eA) (155)

(Here 3Cr(B;cp) is the entropy of source 0 relative to source cp.) We use

this result to bound the effect of the mismatch. The details of the

derivation are in Appendix B. The final result is

rn(T) < n 1 log J[log n + k S(J-l)log n] + K n1  (156)

for n > K2 (log n)2 where K1 and K2 are constants independent of n and B

given in Appendix B, equations (B.34) and (B.35). So the code is minimax

universal.

As previously discussed, we wish to compare the performance of a

blocklength n VL-FL code to that of a blocklength njlog JI FL-VL code

(these codes have the same number of codevords). For FL-VL codes (143)

I gives

RF(n[log Jil _ n log J[ S(J-l)log n] + in (157)

and (156) implies

PV(n) S n 1 log J[log n + S(J-l)log n] + K1 n (158)
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L so we see chat the leading term in the redundancy bounds is the saw except

4- for a log n term which appears in the VL-FL bound. This additional term

ris present because there is no known bound on the redundancy of a Tunstall

code which remains finite as the minimum letter probability of the source

approaches zero. If the sources have all letter probabilities greater than
d.

some 0 > 0, then the log n term is replaced by log s-1.

Further if A is the class of binary memoryless sources (so S - 1 and

A (0,11), then the log n term may be eliminated. The final result for

this case is

Rv(n) <_ " log n + K3n . (159)

- The derivation of this result appears in Appendix B.

2.3. Performance Evaluation for Binary Memoryless Sources

In this section we construct VL-FL codes for the class of binary

memoryless sources using the method presented in Section 2.2, and compare

their performance to the performance of the FL-VL codes constructed in 111.

One modification to the basic code construction is given, and the performance

of codes obtained from this modification is evaluated. Here J - 2 so

n log J - n and we must compare VL-FL codes to FL-VL codes of the same

blocklengths.

One difficulty which arises in designing a Vt-FL code of blocklength

n is that we do not know apriori the cardinality of rn for a given m. We

* only have the upper bound of (149). So to actually construct a blocklength

n VL-FL code we use the following iterative procedure. We choose an initial

*number N of codewords for the Tunstall codes r(i) which are designed for
M

II

iL
1~
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sources in I (here mn log N is not necessarily an integer). We then
M*

combine these codes into a single code r (N). We iterate this procedure

to find

mnax N: jr*(N)I I 52n . (160)

So N is the maxitumi number of codewords in the Tunstall codes r(i) such

that the combined code has blocklength n. Then we seti* *
r r*(N) . (161)

If we let the parameter e for a binary memoryless source be the probability of

a one, then the class of binary memoryless sources is the interval [0,11.

Because A is one-dimensional we may easily determine the optimum design

point set fm for any ym. These sets are given for some values of y in

Table 1 of [111 and may be determined for other yM using the technique

described there. Codes of blocklengths 5, 8, and 10 were constructed using

these sets 0 . A graph of the redundancy-of these codes is given in Figure 7.

The curves are symmetric about 8 - .5. In Table 1 the maximum redundancies

are compared to those of theFL-VL codes of (11]. We see that VL-FL codes

have significantly better performance for blocklengths 8 and 10, and only

Sslightly worse for blocklength 5. In Figure 8 we have graphed the

redundancy of blocklength 8 and 10 VL-PL codes together with FL-VL codes of

the same blocklengths. The VL-FL codes have lower redundancy for almost all

values of 9. The largest difference occurs at 9 - 0 or 1. The reason for this

is that in any universal FL-VL code the codewords for the all zeros and all

ones output blocks mst have length at least two, hence the redundancy at

1e 0 or u must be at least 2n l .

....
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n 5

I

n 1
* I- 3.4-_ _ _

UT

911-1

9,9 3.2 3.4 , , !.

Figure 7. VL-FL universal code performance for blocklengths n 5, 8, and 10
over the class of binary meaoryless sources.
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n VL-FL FL-VL

5 .40O9 .4~00

8 .14.250

110 .139 .200

Table 1. llaximuu~ redundancies for VL-FL and FL-.VL codes of bloclk1anztas
n=5, 8, and 10.
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FL-VL
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I~~ FLV

% I V * I

.1!P11 89a. .

a) blocklength n 108

ab.u 3.5T 3..5..
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The lack of structure in these codes typically requires a table

lookup scheme for decoding, so their complexity increases as 2 n, the total

number of codewords. This limits n, and thus the achievable redundancy is

also limited. To alleviate the problem of complexity we may adopt the

(i)following modified procedure. We design Tunstall codes r of blocklength m

for the sources Vj E Om . Instead of combining these codes we leave them as

separate "subcodes". Then we encode the source outputs (xoXl, ...) as

follows. Each subcode encodes k strings from the source output. We use

the subcode which has the lowest rate for this set of k strings, i.e., the

one which encodes the largest number of source outputs. The codeword for

this set of k strings is the concatenation of a prefix of length Flog yml

which identifies the subcode we are using with the k codewords for the encoded

strings from that subcode. The total number of codewords for this procedure is

y 2 . The resultant blocklength is approximately km and would require about

m$. m2 k  codewords in the original coding procedure. So the complexityofti

j blocklength km code is approximately that of the blocklength m code previously

considered. The reason that this new code performs better than a blocklength m

T code is that the redundancy due to combining the codes r(i) is of order

mn log m, whereas the other terms in the redundancy are of order M-1. With

the new procedure these terms are (km)' log m and in respectively so that

the dominant term is reduced with respect to the other terms.

A similar technique is used in [11] for longer blocklengths. A

jspecial code is used there for source with 9 near 0 or 1, but the complexity

remains about the same. In Table 2 we give the maximum redundancies of VL-FL

I codes of blocklengths 50, 80, and 100 which are constructed by encoding 10

I
LI
k II - iI - I_
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I

i

ii

j n VL-FL FL-VL

50 .117 .080

80 .065 .050

100 .053 .050

Table 2. Naxiium redundancies for VL-FL and FL-VL codes of bloklen,;tns
n=50, 80, and 100.

-[

-I-
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strings with VL-FL subcodes at blocklengths 5, 8, and 10. Results from

(111 for the same blocklengths are included for comparison. The nL-VL

codes perform a little better, but there is no great difference.

Ii

-A.
-- . - - -
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CHAPTER 3

j UNIVERSAL CODING FOR REAL-VALUED SOURCES

j 3.1 Introduction

Here we consider source coding for discrete-time real-valued sources.

The source output for the i-th time interval is a real random variable X.

Fl In contrast with the previous chapter, the entropy of these sources is

generally infinite, so noiseless source coding is not possible. The problem

here is one in rate-distortion theory, so the goal is to find a code with

low distortion for a given rate. We assume that we have a distortion

measure d n(X,y) for each positive integer n, where x and y are elements

of in, and that there is a maximum distortion D < - such that

dn-  Xz)1, d xLE ra (162)

for all n. There are a number of papers on coding techniques for known

sources of this type, e.g., [25], [281, and [291. For some specific classesI of sources we show how a code for an entire class may be constructed using

a coding technique for single sources in A. We show that asymptotically

this code performs as well on any source e E A as a code designed specifically

for that source.

The codes which we consider are fixed rate; that is, all codewords have

1l the same length. The codes consist of vector quantization followed by a

mapping of the quantizer outputs into fixed length binary sequences. A block-

i length n M-point vector quantizer is a mapping fn: in - A where A -

{ai: i-l,...,M} is a finite set with elements in In. The elements of A

are called output levels. The distortion which results when the outputs of

[ a given source 8 are quantized is defined as
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1-
* liwhred D(f ;9) * ~nXf()J(163)

where d n(.,.) is the distortion measure and X - (,...,X The rate of

nj quantizer ~nfor source 9 is defined as

R(fn;0) - flog M (164)

1  For our purposes a code is determined by its associated quantizer f n so

we refer to the code as f.. Then the rate and distortion of the code fn

when applied to source 0 are defined by (164) and (163) respectively.

We assume that we have a coding technique for sources in a class A.

So for any source 9 E A we may construct a blocklength n code ? with Mn

output levels. For a given blocklength n and rate R let 8n,R(0) be the

distortion achieved by fn. We assume that

6 (0) - D(fG;0) 4 D(f';O) (165)

for 0, P 6 A. So when applied to source 0, f n performs at least as well as

a code designed for some other source in A. The coding technique here

does not necessarily yield optimal codes; that is, 8,(0) need not approach

the distortion-rate function D(R) for source 9 as n ,. For example, these

codes may be derived from locally optimal quantizers (designed using the

algorithm of [251 ) or from optimal one-dimensional quantizers [29].

For some specific classes A we show that given -a coding technique we

may construct a sequence of codes of increasing blocklength fl,f 2,... such

that

D(fn ;) - n ,R(O) 0

and

R(fn;O) * R 
(166)

n

I~~~~ ~~~~~~~~~~~~~~~~~~~~ . ._______________________________ . _____ .......... ___________
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uniformly on A as n . We call such a sequence of codes minimax universal

Swith respect to the coding technique which yields 5n,R(0) It is important

to note that 8,(0) is the distortion achieved by many different codes,

each designed for a particular 0 E A. In contrast to this, D(fn;) is the

[ distortion of a single code over the class A.

First we consider classes of memoryless sources. A general result is
i(.

derived for classes which are twice-differentiable with respect to their

paramters 0. This result is in terms of an integral which is evaluated for

some specific classes. For all of these classes the result is that

D(fn;O) - R(0) 4 Kln -

a R(f ;O) - R 4 k 1 log n + K2n (167)

where k is the dimension of A and K, and K are constants. We then show

that a result of the same form holds for k-th order Gaussian autoregressive

sources. These codes give upper bounds on the additional rate and distor-

tion incurred when coding for a class A rather than a specific source

* 96 A.

An outline of the code constructior and bounding of performance is as

I follows. For each integer n we have a finite subset On of sources in A.

Codes for each source in n are constructed. These codes are then combinedS I n

into a single code by adding a prefix to each codeword which identifies the

source in 0 for which the code is designed. The rate of the resultant

code is greater than the rate of the individual codes because of this prefix.

- The code has low distortion for the sources in On but may not for sources

which are not in $ . As the number of sources in 0 increases, the additional

1% A _____ _____ _____ _____

:m. '
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rate increases and the distortion decreases. The first result bounds the

mismatch distortion, i.e., the distortion which results when a code

designed for one source is applied to another, in terms of the entropy

of one source relative to the other. Next we show that if the relative

entropy may be bounded then we may pick n to give a minimax universal

code. The relative entropy is then bounded for some classes of memoryless

sources and finally for Gaussian autoregressive sources.

3.2 Code Construction

We design codes f(i) of blocklength n and rate R for sources v e n
n

where n = { : i-l,...,7 n } is a subset of A. These codes take n-tuples of
nr n

source outputs into codewords of length log M , where M is the number of

levels in the associated vector quantizer. These 7n codes are then combined

by adding a log 7n -bit prefix to each codeword. We denote this combined

eo *
code f . We known

D(f(i ;  -P nRPi (168)

where R = n-  log MH The encoding procedure for fn is as follows. Set

for i - arg min d -x (
_ 

) ))  Then the codeword for fn(X) is the codewordI: *

for f (x) with a prefix attached. So we have

D(fn;9) 4 min DUM n ); (170)
n i n

that is, the distortion of fn for a source 0 is no greater than the distor-

tion for any one of the codes f~i.( from which it was constructed. The rate
n

off is



67

D-f;O) - M"' + -log 1 (171)

Now If j arg min D(f ;0) ye have

D(f**0) - 6 a,(0) 4 D(f 1 ;G) D(f~i;~ PP +-~ O 0

Let fn by the code designed for 0. Now

D(f ( i ) i) (o D(fn; ) (173)

. so we have

D(f*;G) - 8n,(0) ' fD(f~i);G) - D(f~i) ;SP + DiP Di;)

(174)

The set t' is designed such that the right hand side of (174) may be

bounded uniformly for 0 E A. Both of these terms are distortion mismatch

terms, that is, they represent the distortion incurred when a quantizer

1designed for one source is used for another. The following theorem

bounds the distortion mismatch in terms of the relative entropy.

[ Theorem 3.1. If f is a code and

r . Kn9; )+ n ;e)< (175)

then

ID(fn;O) -D(f;)I s 6(2 log e) "4 (176)

[ where 3cn(e; qp) is the n-th order entropy of e relative to p (301,

3C( (S;c) - sup z li(B,)log -- ( (177)

iI !
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where the supremam is over all finite part, )ns (B ] of K and p (B) is

the probability that the source output x E K a is in B for source 9.

Proof. See Appendix C.

k
Now suppose that A is a compact subset of K . The following

fcorollary bounds the rate and distortion of a universal code using
Theorem 3.1. For B - (5 '...,k ) and * - 41 .... *k) we define the norm

. I19 -,1 - Max 1ei -*±:l: iS Ic] . (178)

Corollary 3.1. If 11e -*11 -< n-1 implies 3C((; ) : in"2 for 6,#f E A then a code

f* may be constructed such that
n

ID(f;) -8 n,B (R) 1 :- n-150(log e)-  (179)

and k

"R(*;B)-R _ n k log n+1+ E log(L 1 +n-)J, (180)
4. i.-1

for all 0 E A where

A max Is~~~ 1,i- ... ,k (181)
- e,* EA

is the maximum difference in the i-th components of S and for any

I.9, ,E A.

Proof. We cover A with cubes of size n and then let 1 consist of one[ n
source from each of these cubes. There are at most

• [ k

ri rn "  (182)
i-1

I such cubes which gives (180) and clearly for any S E A there exists a source

(P E 4 n such that Ile- - ! S - so (179) follows from Theorem 3.1.

I

i , .vr .,.,/,
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Let A be a class of memoryless sources. Since A is a subset of IR

j.a source 0 E A is specified by k parameters {8i,i-l...,k}, *i e X, and

we write 9 - {1"*go.,k } . If 9 has a density p*, then we assum that

il .d
and

P (183)

exist for all ij - 1,...,k. For memoryless sources

Pe(M) - 1 p9 (x)tlm
so

3C (9;~)(184)

1. For such sources we have the following theorem.

[" Theorem 3.2. If ii e-jj < : then

X, (0 40) < k K E (185)

where

i]
ONO(1oAe)sup, p"(x)oe) dx: EA, iJ l,.,k} (186)FP W

for A C IRk.

Proof. This follows directly from Taylor's formula. We know (30]

3C Pe (-x)

so

h[
!

.,. • : , = -. .-
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K T2 (192)

q~i:

Next consider a class of mixture distributions. Let {q -... ,k+l) be

a set of distributions on IR. Then define A C Rk by

A- {9: p (x) - B iqi (x) , J-1,...,k} . (193)

Since

SP, (x)  q q (X )

and

we have

K - . (194)

I. Finally, consider the case where A is a compact set of k-th order

Gaussian autoregressive sources [30J. We assume here that d n(-,) is the

&minimum of nD and the r-th power of the Euclidean distrance. We also

assume that if f(x) oi then

I d dn(X' i) 4  ; j = 1,2,...,M. (195)

This means that each source output is mapped to the closest output level

by the quantizer, which is a necessary condition for a quantizer to be

S I optimal. In a Gaussian autoregressive source the output is generated by

adding a Gaussian r.v. to a weighted sum of the previous outputs. So the

UJ-th output is given by

-~ 41
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3XC(;) <)(C1 ;9) + z (0i - *) 603c (;0)

i ei o-m.

k k
+ E (0(0 -*j up =I :to E A).

i-i J-1 j
(187

Now 3C, (0 ;9) 0 and

so -y ;0 c-Wd 0 (188)

So the theorem follows from

P. i W j~
. ;Wt (log e) J W x)  dx • (189)

{. If K is finite for a class A then the hypothesis of Corollary 3.1 is

true and the code is minimax universal. The performance of this code is

given by (179) and (180) with - k2K* . If A is the class of Gaussian

distributions with mean A E l'1, 2] and variance a2 6 2 > 0, then

k, the dimension of A, is 2, and computation of the integral gives

K * - max (1,2a121 (190)
K1

For the case where A is the class of exponential distributions with mean

SBE [a1,821, B > 0, we have k-i and

*• 1
K - --. (191)

dMore generally, if A is the class of gamma distributions with a > 0 fixed

*and 13 ([1,02 then

t1
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I . k
Xj =-E aixj 1+z (196)

where Z ?R02 are independent. We assume that the sources are

2 22
asymptotically stationary and that o E [E0lp2]. This is guaranteed if

the zeros of

I a(k) - l+alk+ ... + k

have magnitudes less than one. In vector form (196) becomes

-, 1- j. + (197)

where X (XX - (Z 0,...,o)T , and

_a -a 2  -ak

b [ 1 0 2 (198)

So the roots of a(X) are the eigenvalues of y. A source e E A is determined

(al,...,ak) and a0 o we write 9 - (al....ak,a ). Each 8 E A must have

ak # 0; otherwise, it is not a k-th order autoregressive source.

The design procedure and the derivation of performance bounds are a
la

is an issue. As in previous chapters we want the universal code to perform

well for all initial states. Here however the initial state may lie
V kanywhere in R so this is not possible. We must assume that the initial

kstate lies in a compact subset of RI . Specifically we assume that

I xjlS < a for j - i,...,k. To construct the universal code we design

I codes for various sources in A but only for a single fixed initial state
0_a 0 4 (0,0,...,0). We first consider how a code designed for source t

with x 0 0 performs when used for source e. If lie -1 € c we have
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Xnhe;C) 5 C *2 log e~- +k a2 2 219

where

X 2 sup ILr EUr X2n 2. (200)
x QEA n-a

Now 2 < - since we assune that A is compact and that the sources in A areK

stationary. Details in the derivation of (199) are given in Appendix C.

Given (199) we can bound the rate and distortion of the code as before.

0
So we have now constructed a universal code for initial state x - 0. We

bound the performance of this code for other initial states as follows.

Given a vector of source outputs X (X0,..,Xn_ ) from a source 0

with initial state x - (xk,... ,xl) we define a vector I_ by

Xi "xi - (201)

where

i "  i+i10l
i l ; iE 0,...,n-l. (202)

12

The matrix ? is as in (198) for e - (al,...,ak,2a), and [x] is the J-th

component of the vector x. Then i has the same distribution as a vector

generated by source e with x . 0. So we know

E. dn(-'fi(-X))] -< n 8nR(a) + K' (203)

where

K Dioj +k 2 a 2 (204)

From (195) we have

dn(X,fn(X)) 4 dn(X'fn(_)), (205)

Let X - fn(X). Then the expected distortion A (unnormalized) is bounded

by

t .--.
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:-E 8 {[- (X-X,)2jlJ } (206

Now from (205)

I

carrie o t xinx C. This Iive s i=Oives

Since the eigenvalues of T are strictly less than one i as 1 00
~So we may bound

n-r
)A 2 < h K (207)

owhere h does not depend on n or 8. The details of this derivation are

, carried out in Appendix C. This gives

-E (E (Xi - [n(X_ +h .(208)
i=O

If r 1 and a,b > 0, then

(a +b) r 4 a r + rb (a +b) 
r- l

which implies

A 4n5n,R(8 +K + rh(D +h)r-I  (209)

So, the distortion mismatch is bounded by



i,5
ID(f*;) -8n.R() 1 a (K' +rh( +h) r -l]

!1
where K' is defined in (204), and from (180)I

*-1 k -12 2 1

R(fy;9)-R<n -(k+l)log n+l+ Xi log(bi +n-)+log 2 -a1+n-A
Jul

T where

b i A max Jai'a 1iJ

; Ocp E A

using B - (al,...ak, 2 ) and c - (il....,;,2). So the code is minimax

universal. Notice that only O(n ) terms were added to the rate and

distortion in going from a fixed initial state to an arbitrary initial

-1state in some compact set. Again the additional discortion is O(n- ) and

the dominant term in the additional rate is the number of dimensions of

the class A times n-l log n.

3.3 Generalization to Unbounded Distortion Measures

Under certain conditions we may remove the restriction that dn(-,.)

is at most nD, and still get minimax universal codes. In particular this

may be done if dn is a different distortion measure which does not increase

I exponentially and if the contribution of high distortion terms to the

expected distortion is small for anyO Fe A.

Let B(4) be a sphere in in with diameter w and define

-i dnO(x-y It) - n-  dn(Xy)

where II. 11 is the Euclidean norm. If for all B E A we have

f n( x  P (x dx < f(W) (210)

S[B()l c

Ii- " . . . T I . . I ,I _,
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where f(w) + 0 as W + and in addition

d dn(Oe -  0 (211)

as W --W, then we may construct universal codes as before. We assume

that the quantizer f has at least one output level in B('W). If this isn

not the case we may add one output level to fn . The effect which this

has on the rate is small; M is simply replaced by M+1 in (171), so the

dominant term is not affected. To bound the distortion we divide the out-

puts into two sets. For the set [B(w.)] c we know that the total expected

distortion is at most f(w). For x E B(M.) we have

n dnX-1X)' d n(CJ) (212)
n(-fx) n

so we may bound the distortion as before using dn (W) in place of D. So

if we set wo . log n then the distortion here is bounded by

* n-1i -

D(fn ;) n d n(log n) K" (log e) + f(log n) . (213)

*
So from (211) is is clear that f is minimax unLiversal.n

If dn (w) does not increase exponentially with wo then all classes

considered here (except for the mixture distributions) satisfy (210). For

example, if d is the r-th power of the Euclidean distance and p6 (x) decays

as eQX then

f(w) - k r e-OW

so that

f(log n) - k n- (log n)r (214)

and

d(log n) - (log n)r

I_________________________ _________________________
, t-4.

-~-------
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Then we have

D(f*;9) -8 (9) Kn (log n)(25
n n,R

where ICis a constant. Note that the additional distortion ia no longer

- O(n )in this case.
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APPENDIX A

I. PROOFS OF THEORE FROM CHAPTER 1

Theorem 1.1. Given any two initial distributions po and v0 on [0,1], if

i 1 and v, are generated from (38) then

i_.l~ '(' 1) s< Nkp1o' 'o) (A.1)

where 1 1-a-p.

Proof. The proof is done in three stages. First we assume p0 and v 0 are

concentrated on individual points, then finite sets of points, and finally

we generalize to arbitrary 0,v 0 .

Assume that v0 is concentrated on a point z* and p 0 is concentrated

on z*+c, where z* E 10,1) and c E (0,1-z*]. This gives v 0 (fz*}) -1,

p0({ z*+e)) - 1 and p 0 ,v 0 ) - e. Now let i 1 and v, be the distributions

generated from po and vo0 using (9). So

p,[ ( fk(z*+e))] - p(klz*+) (A.2)

and

Vl. {fk(z*)}] - p(klz*) ; kE A . (A.3)

Since a nd a re one-dimensional, p( ILv1) is given by (5]

1;(lv) 0I ,l[O.z) - ,z[O,zlldz .(A.4)

So the p-distance is the area between the cwumlative distributions for

a1 and v 1. We first show that pl[O,z] - vl(O,z] never changes sign. Define

a set B(z,z*)c A by

B(z,z*) E (k E A: z > fk(z*)J . (A.5)
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Than we have

11110.x2] - k ~~*+)p(klz*+e)

end

V110S) -k E EB(z,z*) kl*

Nlow f.k(z) is of the form

akx +bk

jfk(z) - eke +d k(A. 6)

where %,~b k'ck- and dk are constants, and its derivative is

f( -akd.k - b kck
fk~ -cz 2 (A.7)

(z+ k)

50 fk(z) is monotonic. From the definition of fk (6) we have

- kek -(A .8)

so if X~ k 0 fk(z) is increasing, and if X S 0 fk(z) is decreasing.

J- Assume that X >O. Then

fkz*+C) 2t fk(z*) (A. 9)

for allikE A so

B(zX* +s) C B(zz*)

We now show that

ki E t~* p(klz* 4-e) -p(klz*)) S 0 (A.10)

forallk E A.z*
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Since X 2 0 (A.10) is equivalent to

Er IY ( ° ) - yj1(k) 2 0 . (A.11)

(Here we use B - B(z,z*) for convenience.) If either B or its complement

B€ is empty, then clearly (A.11) holds with equality. So we may assume that

both B and Bc are non-empty. Suppose (A.11) is false. Then we have

E Yo(k) < E Y1 (k)
kEB kEB

and

kEEC yo(k) > kE yl k (A.12)

which together imply

] E .k B yo~r)k E BYl(k) >  E 'Y0(k)k E B¢ '(k) (A.1.3)

-kE c k E B k EB k EBC 1

But if k E B and j E B then

{ fj (z') > fk(z*A) (A. 14)

(recall B - B(z,z*)). So we have

~yJ(j)ll(z. ) > YI(k)lql (z* )

1 > (A.15)
1 1

I; which implies

[i yl(J)'yo(k) > Yl(k)YO(j) "(A. 16)

I

Ii
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If we sum both aides of (A.16) over all pair. (k,j) such that k E B and

j~~ Eycwehv

JE 1(J) E Y0 (k) E y1 (k) E Y0() (A.17)
B k E B kE B jElf

But this contradicts (A.13), hence (A.11) must be true.

So we have

plJO~z] E p(klz* +e)
k E B(zz*+e)

:5 E p(klz*+s)
k E B(z,z*)

:5 p(klz*)
k E B(z,z*)

- 1[0,zl (A.18)

for all z E [0,11 as desired.

For .1:sO0we have

B(z,z*) C B(z,z*+C) (A.19)

and since (A.11) still holds, it follows that

E [p(kjz*+e) - p(klz*)] 2: 0 (A.20)
k E B(z,z*)

so in this case

11i 1 (01z 1 0z] VlOZ z E [0,11 (A.21)



82

In either case the absolute value in the definition of the ;-distance

(A.4) may be taken outside the integral, hence we have

sl,") 0  o,i - vl[0,zo]dzl . (A.22)

Now

I
j(11 - pl[0:z]ldz
0

is the expected value of z under p, so

E, p(kjz*+t) k (z* +e)- p(klz*)fk(z*)li

-= E yl(k)tll(z*+e) - l(z*)Ili kEA

- IX It

- ixlP (Pov) . (A.23)

If P0 and v0 are concentrated on a finite set of points the result

generalizes as follows. Let P be the class of distributions on [0,1] which

are concentrated on a finite set of points. Let 0t* be the joint distribution

which achieves (P0,v0). (Since p0 and v0 are one-dimensional a* is easily

determined.) Now a* is also concentrated on a finite number of points, say N,

so for some set (xi,yi))N we have

"*( (xiYi)}) k i  0 (A.24)

* .N (i) (i) (i)
and E - 1. Define probability measures vo and c " i 9

by i-l

P1O ({xi}) l
(i)

V 0 ({Yi)m

(i)
CIo ((xi, yi)}) - . (A.25)

[
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T(e letL be generated using (9). Let a()be the Joint

distribution with marginals p and v which achieves p(p I V1

For each i (10) and (A.23) imply

E ( )[l='yl] :5 I'lI'LYil (A.26)
/1

since I a nd v are concentrated on single points. Further

a 1 E e 6 (1 is a joint distributiLon with inarginala p1 and v1 , hence
i I

Nof E a *-y]is* a eE i Ix-ylp

N

p pIv1): f I-1 - E e811 (1.Ix-yI1 -1l

aX E* IXxiYI

a P 4olvo) • (A.27)

Now consider arbitrary distributons L0 and vO . Define a sequence of

I. N
distributions 0 for N- 1,2.... by

I." N -1 -

p" [O,xj - i f Eo[O,xl E ((J-1)N ,JN I 1,...N.

[Then 
PO

* -Ik (p, 0  1PI.O[O~x] -p0O[0,xjjdx

N x

-E I~ J N [O'x - 1o(0,x Idx

N j X[. N.. 2j 1 -l-

i E _ N l - (J--)N . .dx -
jml J1

..... --
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1.where zx is such that iko O'x] :5PS for x < xand ~OOX1 >' i1r'

for X> x

1.N N
Now if pand 1hare generated from 10and ft using (9) we have

N Ii(O,J 1 [O~x]I - (il P( ) ( &N() -o(d)1 * (A.28)

Since fi is monotonic f, ([O xl) is an interval, say [w i yi], and using

* integration by parts

p I i(i Z) (1h (dz) - Ik0(dz)) - p (i z)( [O.Z] -1 A

vii N

Ii + Ji (101O,Z] - (O[z]'Z'(i z)dz

INow d p(ijz) MY Xy(i) -Y0 (i)) :5 1 s0

YjN NN

Y, N[O,z] -ji0(O.z])dz
Vi

Ii 2N- + ;- N

:53N 1

It follows from (A.28) that

IINOx -iOi(OxI :5 6N-

to

p~j,,)S6N ldx 6N-1 .(A.29)

u.If we define v N similarly ye have (vN1v 1):5 6N 1. We know

'I [I NN)
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so by the triangle inequality, i N+12-

:5 IXI[p4hO~vO) + 2N -1 + 12N4

~ + 14N41 (A.30)

Since (A.30) holds for all N we have

p1 3 v 1 ) :5II(OV0

for arbitrary distributions p.0,vo on [0,11.

Theorem 1.4.

Fi(os~) -( IXI I:0z 0  (A. 31)

where z£( deie fn inii using
arandderivedaremrinitial estimates zoand

the recursion (6) i times.

Proof. We will use induction on i. For i 1

Fl(z0,;0) - E If i(z 0) -f %)lp(jlz 0) (A.32)
j E A

where f and p(JI*) are as defined in (6) and (8). Assume X(zo -i) 2t 0.

Then f i(ZO ) a f i(;,) so we may remove the absolute value brackets in (A.32).

NOW E f (iO)p(iIzO) is the expected value of a distribution which assigns
j E A

probability p(jjz0) to the point f (z0) j E A. Let jbe the probability

measure for this distribution. Tht-.
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ti[O:z] E 3(z I)O

j E B(Z,z)

where B(z,zA0) is as defined in (A.5) and the inequality follows from (A.20).

Next

fv[Ozldz f E IoP(IO

so F 1 ( 0 Z) jE E A(0~(I~

-I%(zO-Z^O)I - (A.33)

The same result follows if )(z0 i 0 ):5 0 using corresponding inequalities.

So the result holds for i - 1.

Now we assume F (z 0  ) z ixi.I-z o for J1 5 i. Then

Fi (zo)$0 E zi LQ+l z f(I +l) I ifiilI:O)
i~~l L~+l ilt

x

i (A.34)

xi

II-hF±(zo,2o)

where (A.34) follows from (A.33).
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Theorem 1.5. lI , cp EA'(6) then

+ % X9Kt1I~1 (A.35)

where

Ke 62 [3c+3e 2 +6C31 +6, (A.36)

is the probability that A5* is output from source B if the initial

es timate is z and lat-.

* Proof. First by (6), (8), and (54)

If()-TA-I 1  - +

lj 6+ injlljTljI+c(.7

(A37

where Ii Y±(jyfli(z) and Tjij sdfnda using the parameters for

source cp. Next, if we define

K - (10zc~-).pz(-l(-

and

K' - z+lc)Iz][ -pzctl-I

then K - K 5 e. So since 'Ty li - Y()%O(JiK and I * yl(j)y0 (J)KI

we have

hjljO-jljO I(yj'()+.)(y 0(D+c)K' +) -yi()yo(J)K'I

2 3:53 + 3e +g C (A.38)
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Soawe have f (Z) - f(Z) :9 8[3e+3e +C~ and

Fl(Zogo) 5 Elf (z0) -f (%)IP(iIZ0) + C

:5 Elf i(z0) - fi (go) IpQI zo) +E I fi(go) - 1 (20)IPO I zo) + 9

S k)el~lo-ol +KC (A. 39)

-5 lX K 6 .(A.40)

Equation (A.39) follows from Theorem 1.4. Next

- ~ l+ ( 2o d i)PxQsI)

so from (A.39)-(A.40)

- )XeF(oo0)+K 9 (A .40~

and we solve the recursion (A.41) with initial condition (A.40) to get

Izj20 eI+K l X1(.2
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[
Theorem 1.6. If B E A(e). (Q,(P(x))) then

SD A jll ")t,_,j ")...1I -_xe '>t( b..1" l S C,'l  (L.43)j n -1

for any probability row vectors ! and 2, where C is defined in (65) andz- =(x 1,...,% ).

Proof. Throughout this proof E n will be a fixed vector of source outputs

i
and x iil be used to denote the first i components of z nfor i S n. Define

Z(J) (3xj)j and let C be the set of colums of i(J). Then
lj

max (A.44)ia a E C [ n ) gatJ (n)J. <n
max min*- U, (A.45)

n E C ECn i a Vn i E V C n  )

where

vn A (i:ai(n) > 0, (A.46)

since zi, li, and ai(n) are non-negative. We will prove n- by

induction. First A1 < 1 since ui 2 0 and a1(1) • i for u E C1. Nov assume

[J-1 " Note that

I tQP°' )0i . l
[QP(xi)uJ-]i qL (j)  (A.47)

where u E Cj. 1 and u' E C . Also if we define

SVj m ) 01 (A.48)

II

i '*'
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v CV. and since p(X Ii) >-0 implies

[P(z1)a11

we have

A ~ {a [Px)&m-LV LPz)J (A.50)

Le - qjl n y APx~ for some fixed x E C Le

aQl) ax y/i and b~u mL i EiiL. Also define
i E v iE V

Ii (U) -max

b (u) -min IQ!E (A. 51)

Then if W CMkm):ykw. > Ymjkl
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L ~~m E. q(tik)q(Aju)(v 3  yV
I~ k,a

mx(k~m) EW

i.A E [q(tjlk)qUAlm) +q(ljm)q(ljk)1 uk(k,m) EW

!5 mx a [q.ilk)q tlm) q(ilm)qUAlk)](y v,-wvk

(1 - (S - )a)2 -c 2 mx (ykvm - Ymwk)

(i-(S-i)4) +6 (k,m) E W W

-C(a(u) -b(u)). (A.52)

Frrom (A.46) and (A.51) we have

:5 max C u -~)

C 1

-1 (A .53)
as desired.
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Theorem .7. if 9,ff e A 1(6), and the paramters for 9 and (f are within s,

1.then if A isthcoefri eav
-1 A

r (A 0) :5Kn + Ke

1.Proof. For convenience let A~mitzo) - iLluo) anid T'L'I') e(Xilxo)
in this proof. Then

r (AnG) -mn. 11[1+E (x z) C mmn r- log (,n k)1)I + log (,iz))
nx k-O,l

-1 n-i P(xi+ilziL)
n 2 + En PILIZO) E log (A.54)

where zji(x) is the estimate derived from outputsm Lvith z0 -0. Now since

log x : (x-l)log e and -tIO E pLn 0)
mi+l, x. xn

we have -

r :r, n 1 C2 + ni61 log a E xL

lo0w

F p(xlx)-q(xll)l tS p(xlz)-p(xig)l + jp(,xl)-q(xlf) I

(A.56)

where qLis defined in (A.37).

F4
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2
The second term is at mot 4e + 2# so

r 5 (.t 9):S2n'.+ (MB)-1 log a E EF A l )YOW-,() a -1 h
I- n xm i+l

+ 4c +2 21 (A.57)

and from Theorem 1.5

rA(,) 5 Kn +KC (A.58)

where K and K are defined in (95) and (96).

Theorem 1.8. If r (8) =R (8) -3C (e) is the redundancy of the code It then
n U c In

r (0) : n (1- log J) .(A.59)

Proof. The entropy of blocks of source output X E An given no previous

II. outputs is

Ii n(l) E nixz)o (j* (A.60)
xEA'

since z* is the stationary distribution of the switching process Zi. Further

we know
n)1  : H (X ...)

[-i3C (8) , (A.61)

where X (8) is the entropy of the source. The average rate of the code Lc n

applied to source 0 is

R R(9) --1  E nD(!91*)An(x) , (A.62)
xEA

I and since An is the Huffman code for P(-Iz*): x E An) we haveI

I

...~~~~... .......... - " 'i " ' 1I I lI
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nlDtn(e) k Rin(.Q) k URn(9)- 1 .(A.63)

Let ZO be the initial state of the switching process and let T be the

first switching tim (we set T - n if the first switch occurs after tim n).

[Then

R (n.I Zox (A.64)

I since Xi, 1 1, is independent of given ZO . Next

1. (A .65)

where the expectation is over Z0 and T, and

I~

m
- IPEx - X.Z o - Z) (A.66)

:1:,""ifor zxE A W. kno

n k log J€ a~n-k(X-) k Hn(X)- oJ

oo since the source alphabet has J letters. Since the second sun of (A.65) is

* the expectation over T of Ra.T () and since the first sum is positive we

have

___________._.________._,__....___,__-7
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IL n ( V ETIlog J

So fr~om (A.61) and (A.64) we have

H ( X) Z Oc c (8) H H )l g j( . 8
n C o f6 8

hence from (A.63)

-1 1
%n) 3 c 5n(+ loJ)A.9

as desired.
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APPENDIX B

[ PROOF OF REDUNDANCY BOUND FOR THE vL-FL CODE OF CHAPTER 2

In [ 131 a set# - i L - 1 .... ] n is constructed with

-n " S xp2[S[j(J-1)log 9jn1 + r2 log J1 +J1 (B.1)

such that if e E A has transition probabilities P. and inital state a 0

then there exists a c E # with transition probabilities p1 and initial state

8 0 such that

3C (p J) E p(xj)log p(x) -(B.2)Hr - x EA P9(xlj)

for all j - 1,2,...,S. Further, if , is in 'n then

mintp (xlj): J E WD, x E A] - 1i (B.3)1. 9Jn"

SLet I be this set. From (152), if a n + Clog yl then
a a

Ra(r!,e)< (n+ rilogy7 I]E(r)] (B.4)
n a -1a

where r. is the code for cp and 3Cr(pg,pm;J) S n for j - 1,2,...,S. For.

convenience denote p0 by v and p C by T1. Now 2 n is the average probability

of the strings in r so by (148)In
T.(x )/2 "n  < 1 -5 < a (B .5)

" where a is the minimum transition probability of cp. So we have

li n

sx !E rn

< £ vL()E-log v(x)+ogiv(x)/I(x)l]+log 9Jgn . (.6)
x !E r.
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Next define

E v( ) E log - _
E z E r. i-1 1x

-L V EXlil

E i E v Z).log
i-Ia ~E A'-' xE B1(x(00 (B.7)

where s o =J si - L - max[A(x): x E r n and

Bc) [x E. r: xk ' k' 1 !_ k < 1-i, A(x) i. (B.8)

Note B) r. for £ - 1. Next, since

-) V v(-) II v(xklsk-l) (B.9)

if we split E into E E we have

E EB(g) PEA x EB()

L z M)r Pis )0 V ji-,) E A)CI E r ge W is-l) II v(xklsk.1)L-1 v E A x E B(a) k-i+l
...[I xi" (3.10)

Now in an encoding tree the total probability of the leaves which may

be reached by passing through a given node is equal to the probability

[ of that node. The innermost sum is the total probability of the paths

from a node to all of its leaves, which is the total probability of the
ileaves divided by the probability of the node. Hence this sum is one

unless it is empty. Further, since each non-terminal node has J successors

(one for each x E A) if no x E B(S) exists such that xi P then all

Sx E B() must be of length i-l. So if the innermost sum is zero, then



the sun over P is also zero. So we have

I E L- v "(a) f (g) E V(PIs 1 log ~(~i 1

a A PE 1 .1) (3. 11)where

if £(z) 2: 1 for some xE B()

~~f a

~60 otherwi~se

1 Nov the innermost sum is KC(pqp ;si.) '5 n( for any s a- so

1I f< n EL (B.12)

A,- v aa)n =3 E E A-'=)

i-i xEr n

n -1 E v(x)A-() £r) (B.1)
-n Y- ()()n £X.(.3

xE r n

[ We substitute this into (B.6) to get

in +rloY'11(LeTr 0 )j- E v()log vQx)+log 9Jn+rog Y E1.l(r)ll +-I~

(B.14)

:3C(r0 ,e) + Clog 9J0+ rog -Y .i (r) "1 + n- 1.
(3.1.5)

If n > log 9Jn, then (B.15) iuplies

n flog 9Jn

£
II U~ )+n



So from (3.4), (B.15), and (3.16)

1. (log 9JU + log Yl)OM GO)+ n)(.7
* ~ ~ n -3~~.~ n log 9Jn

Define the entropy of the set of strings r as

3c(r,()) E x vr v)log vWs (3.18)

Since the encoding tree for ris a subset of the tree for r! we haven n

A

3c~r~e) ~3CQ e) .(B .19)

Further

therefore

n n 1

- ~.(re) .(B.20)

nn

where

C loS + 4s(J-1)log 9J + 2S logi + s(J +2) + 1 (3.22)

so we may rewrite (B.17) as
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(ra,) 3C(FnO)[ S(J-1)loan + lon + l (.23)
n - log 9Jn P"o 9Jn.3

V(iog 9J+C)K(rAe)+2+n l(G S(J-l)losn+C) . (B.24)

Now if ye follow the steps in (B.7)-(B.ll) but vith 0' --E vx)log v(.) in

place of Q we get

L
0, - -E E - V(0401~) E v(js 1 1i)log V018 il1) (B.25)

i-1 aEA PEA

and since the innermost sum is less than or equal to log J

3C(rn,e) -0 [ [e(rn) " 1  log J . (B.26)

From (B.21) we have

C n < K - (log 9J+C)(logJ) + 2 + J S(J-l) + C (B.27)

Let

K AS(J-l) + . (3.28)

Then

n-- n + (K - 1)log n + C (3.29)

Jand

A *) K le Jlo + K
r(r (3.30)i n- log A- C.

where

C' A C + log9J . (B.31)

: .i Then if we define

[C K(;) - n-1[ log a + C'] (B.32)

! j,
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we have

ra):S n [ log .1.105 + K][ E E((a)] 1.(B.33)

So if

n 2(o2 + C') (log A)2 (3.34)

we have

Taa 5 Anlog J[kS(J-1)log n+log nJ+an (2K+1) (B.35)

as desired.

If A is the class of binary mmryless sources we may eliminate the log

term from (B.35). We let 4nbe defined as I - "**Yn' where

21i2 Y-2  for l:5is y

'Pi C(3.36)

1-2(y ~ , +1 2 for k yn < 1:5y

and yn- L4kQ~ . Then it is easily shown, ([12] equations (18)-(20)), that for

8 .5 if 6 E Ecpi,Cpi+i1 then 3Cr(Bcpi+1) 5 2n 1. We may replace log 9Jn in

(B.6)-(B.23) with log q1Pl where I E [p+.p and (B.23) becomes

* r a * r ~~~ log n +logcp rafr K 16 -o I nlg~(.7
:5 H ( 9 )+ ( B .3 7

n n ~ n o n-
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But fore9 E Itqi-.P 1 :w :have.l()

By the sam steps as (B.30)-(B.33) this implies

rer) 5 4- log n + n B 39
ni n K3

where K3 ~2(K+1.69), for

n~( log n*+l.69+K)(6+2 log a).

For 0 > .5 the sam bound holds since fnis symmetric about e .5.
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APPENDIX C

PROOPS AND DERIVATIOS OR CHAPTER 3

Theorem 3.1. Iff is a code and

. then

th e C ( 9;CP) + 3 Cm (c p;) < ~

ID(fn;S) - D(fn;f)i :5 6(2 log e) . (C.1)

Proof of Theorem. Let J be a positive integer and define

f -1 3x)) E (C.2)
A3m ! n n E (yJi)

If we define h(!) Ae Lx p() W, A ru 5 Ji, and It A Lx:h(x) S 0)

we have

nD(f n ;0) -D(fn; to E IA d n, ' fn ))hx)dxl

' E ml TAh()dx + j'JA n- h )dxl (C.3)

M-1 -1. E m' Z NO h( ' )d x + j'H h( )dxj (C.4)
u-i 3

iJ (i&.U~ -1m
mAm

E1 al j (A)- pf (A )1 + J , (C.5)

where 4. (B) p fp 9 (x)dx for B C ,

:n.
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For each of nlotation let ps p9 ~(A.) ad q.~ IP&q(A.) for am1929.. oJ'. By

I ~definition (177) 3,(~p

3C ~ (9()aEP log-12-
so the problem reduces to finding

subject to the following constraints:

ii i

iii) PL a 0and q L1  Yi

Since max S(pq) - -imin g(p,q) by syumetry, we may bound (C.5) by
Epi,q dC )qL

bounding (C.6). From i) we so* that

PL - 0 a L' -0

Let

I (ps.~)apqia, ) A V g (pq) + X 3C(p, q)'

+ pE i+ qE o. +Z vp +E vqL qi (C.7)

where )XA A are Lagrange multipliers and v and "q are zero if P

and qL are positive, and positive if pi .qI -0. We must have

[ 0 and 0Oat the maidmizing tpsq) Let W be the subset of

t(i,2,...,J') such that i E W implies PL and q. are positive. Then for

L E W we have
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I;I
and

bqr1 05 -+1 q-1 x 0 (C.9)

These Imply

S42 P+q p + q

which it equivalent to

+ Li (C.lo)Sqi Pj

where is independent of I. Now (C.1O) can have only two solutions for

:c '- Pt -
s some i and n- . But from (C.8)

qi-

log LI + I - LI ~qi -LI," - )p

qi Pi

The left-hand side is a function of --ihence it has at most two distinct

values, but the right-hand side is different for all i. So we must have
only two elements in W; that is, only two pairs, say (p aq a) and (pbqb

may be non-zero. Now pa 1-pb and q a 1- % from i) and from (C.11)
we have so q

I qa PbK" " '%Pa " qa f 2pr af. (C.12)

The values of a and b do not affect the relative entropy constraint 1), but

me g(p,q) =  max J[a(pa -q a)+b(pb-qb)]CPigqi) EPi'qi)

, *max J (a-b)(2p -1). (C.13)

-a
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so for a aum we mist haves a1, bJ' or visa versa. Theproblem is

now simplified to finding the msLmu of 12p - 11 subject to

UP)A 2[pa log + 1P)lg-1 !

and I> p a > 0. wCM

k I(p,) • 2 log (2p,- 1 2  (C.14)

so
I 1.12

1 .2 log * [2p a - 1i

il or

12p l Ck(2log e) "h . (C.15)

So from (C.13) we have

Iam E mi- (pm -qm : J I ](2log a)-]

( pi,q L) ,,-l

5 16C(2log e) "k

which substituted into (C.5) gives

ID(fn;S) - D(fn;cp)l < 5 g9(2log e)-k + (nJ) "  (C.16)

Since (C.16) holds for all J

ID~f~e) D~f~)j(2log e)kIi ID(fn;e) "D(fn;cp)l L rh]os. "  (C.1.7)

as desired.I

Ii
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Derivation of Ea. (199). Let 0 - (a1 ,...,&s , 2 ) and t - (ai,,..,aj 2 )

and assusm e 0- fl : s. Given initial state x 0 * le.P k

X C(O;w) - n-1 I P 0 ( )logp.L °
5  

-  (c. )

. E-P(x ," , ""j-.'",X J-kI- Pe "("jIdj- .. "."J.)J-0O

dlog p,..,x . ,..,dxj-k ,  (C. 19)

where

~*0 n-i"BI 11Pe (xj j1' ,Xjk .

The inner integral of (C.19) is the entropy of a Gaussian distribution

"(mr, ) relati~ve to a distribution where

k
j -Eai x

S i m j i

an

I
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kjJ -E ai z J - (C .20)
1-1

We may easily *valuate this integral to got

S3c(;p) S h log a (2 _ 42)2(06)- 2

-12 n-12

I.+ n1 8 E I k Pe(Zj-,b* *3jk)( a, -m') ft4 l .. dxJk

II

i "J-O L1 1
loge-n s-[(

1 01.-

J=O J1,1
0

andi x 0we have

IE J2 2 (C.22)

IJ-0

Further

E[XiXjl :9 mx(E Xi1,E(X,-])r and from (C.33) E il2 E a[Xi I for i a J. so

2
[~ -exj.ixj..] s OX(e) (:C.23)

I where£'

. .. I , II , III
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I If we define

E A

we have from (C.20)

2 -42 22

(8;(P : 14 2 log e la4 a I a2 ] (C.24)

as desired.
n-1 2

Derivation of (2071), Here we bound E i . To do this we first

I.bound * mwhere T A .- Now Y has eigenvalue-eigenvector

decomposition ~-

Yi=V- Ei V.

Let V - lvm] and V"1 - Cut. and define

-sup max max (IuA.I't I.
9 E A 1,z

Since A is compact and V is invertable for all 8 E A (recall ak 0 0 for

0 E A) we have .Let X be the maximum eigenvalue for any II ii
corresponding to a source e E A. To bound the worst case is where Y

I ~hsan le igenoapute eul to X. This gpives6

II
Then we may compute V"E' to get [23, pp. 1561



IIP
1 110

km

k a -jE v t E uAj V-J)X t  ; < <k. (C.26)
t-1 imi

So for i < k

J-0

2

-k 2 (1+),) (C.27)

afor i k

12 2 X-~

Io



:5E12 2 i-k ( _

ni )ik +))

i-k

(I-.-2(kii)[+) k 12 (.0

2 iX (+)-i(.0

where (C.29) follows because E xi (E Xj)2 for xi2 0. Finally we substitute

(C.30) into (C.28) to get

* I.n-i 2 2 (.i

where 2( ikZ k-i
ha k2l2 t (1 X)- kl r(1+ ) 112 + E(1+%)Zi (C.32)

and h is independent of n as desired.
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